Caricamento in corso...
136 risultati
https://www.arezio.it/ - Il Riciclo delle Pellicole Radiografiche, Fotografiche e Cinematografiche
Marco Arezio - Consulente materie plastiche Il Riciclo delle Pellicole Radiografiche, Fotografiche e Cinematografiche
Economia circolare

Dalla Storia alla Pratica Attuale: Approfondimenti sui Materiali e Processi Tecnici del Riciclo delle PellicoleLe pellicole radiografiche, fotografiche e cinematografiche hanno una storia ricca e affascinante, ma insieme a questa storia c'è anche un impatto ambientale significativo dovuto alla loro produzione e smaltimento. In questo articolo, esploreremo in modo approfondito i materiali che compongono queste pellicole e i processi tecnici utilizzati nel loro riciclo, con l'obiettivo di fornire una visione chiara e dettagliata delle sfide e delle opportunità legate alla gestione sostenibile di questi materiali. Storia delle PellicoleLe pellicole radiografiche, fotografiche e cinematografiche hanno una storia ricca e affascinante, che abbraccia ambiti diversi come l'arte, la medicina e l'intrattenimento.Le pellicole hanno avuto un ruolo fondamentale nello sviluppo della fotografia e del cinema. Le prime pellicole fotografiche furono create alla metà del XIX secolo, aprendo la strada a una nuova era di registrazione delle immagini. Nel mondo del cinema, il primo film realizzato su pellicola fu "La sortie de l'usine Lumière à Lyon" dei fratelli Lumière nel 1895, seguito da altri capolavori come "Viaggio nella Luna" di Georges Méliès nel 1902. Utilizzo nel Mondo MedicoLe pellicole radiografiche hanno rivoluzionato anche il campo della medicina, consentendo di visualizzare l'interno del corpo umano in modo non invasivo. Le prime lastre radiografiche furono utilizzate da Wilhelm Conrad Roentgen nel 1895, quando scoprì i raggi X. La sua famosa immagine di una mano con un anello di moglie visualizzata su una lastra radiografica rimane un'icona nella storia della medicina. Composizione delle PellicoleLe pellicole radiografiche, fotografiche e cinematografiche sono generalmente costituite da una base di plastica (solitamente poliestere) rivestita con uno strato di emulsione sensibile alla luceQuesta emulsione contiene sostanze chimiche fotosensibili e, nelle pellicole fotografiche e cinematografiche, possono essere presenti anche coloranti e additivi per migliorare la qualità dell'immagine. Processo di RicicloIl riciclo delle pellicole è un processo complesso che richiede attrezzature e tecnologie specializzate. I passaggi principali includono: Raccolta e Separazione: Le pellicole usate vengono raccolte e separate da altri materiali. Rimozione della Base Plastica: La base di plastica viene separata dall'emulsione fotosensibile. Questo può essere fatto attraverso processi meccanici o chimici. Recupero dei Metalli Preziosi: Le pellicole contengono spesso metalli preziosi come l'argento, che possono essere recuperati attraverso processi di estrazione chimica. Trattamento delle Sostanze Chimiche: Le sostanze chimiche presenti nelle pellicole devono essere trattate in modo sicuro per evitare l'inquinamento dell'ambiente. Questo può includere processi di neutralizzazione o distruzione chimica. Materiali RiciclatiI materiali recuperati durante il processo di riciclo delle pellicole possono essere utilizzati per una varietà di scopi. La plastica può essere riciclata per produrre nuove pellicole o altri prodotti in plastica, mentre i metalli preziosi possono essere utilizzati nell'industria elettronica o della gioielleria. Produzione e Riciclo AttualiNonostante i benefici ambientali del riciclo delle pellicole, attualmente solo una piccola percentuale di queste viene effettivamente riciclata. Le sfide includono la mancanza di infrastrutture specializzate e la complessità dei materiali, che rendono il processo di riciclo costoso e complesso. ConclusioniIn conclusione, il riciclo delle pellicole radiografiche, fotografiche e cinematografiche è un passo importante verso la sostenibilità ambientale delle industrie che le producono. Tuttavia, sono necessari investimenti in ricerca e infrastrutture per migliorare i tassi di riciclo e promuovere pratiche più sostenibili. Con un impegno collettivo, possiamo ridurre l'impatto ambientale di queste pellicole e garantire un futuro più pulito per il nostro pianeta.

SCOPRI DI PIU'
https://www.arezio.it/ - Rivoluzione Verde: Le Carte di Credito Sostenibili alla Ribalta
Marco Arezio - Consulente materie plastiche Rivoluzione Verde: Le Carte di Credito Sostenibili alla Ribalta
Economia circolare

Come il Riciclo dei Polimeri Sta Ridisegnando il Futuro delle Transazioni FinanziarieLe carte di credito sono diventate un pilastro fondamentale dell'economia moderna, facilitando transazioni veloci e sicure in tutto il mondo. La loro produzione, tuttavia, implica una serie di processi complessi e l'uso di materiali specifici, con una crescente attenzione verso l'impiego di polimeri riciclati in risposta alle sfide dell'economia circolare. Materiali Utilizzati Tradizionalmente, le carte di credito sono state prodotte utilizzando PVC (Policloruro di Vinile), un materiale plastico noto per la sua durabilità, flessibilità e capacità di essere stampato con precisione. Il PVC consente di incorporare vari livelli di sicurezza, come ologrammi, microchip e bande magnetiche, rendendo le carte di credito difficili da contraffare. Tuttavia, il PVC non è facilmente riciclabile e può rilasciare sostanze nocive se non smaltito correttamente. Negli ultimi anni, c'è stata una spinta verso l'utilizzo di materiali più sostenibili, tra cui polimeri riciclati. Questi materiali provengono da fonti post-consumo o post-industriali e attraversano un processo di pulizia, triturazione e rigenerazione prima di essere trasformati in nuove carte. L'uso di polimeri riciclati riduce la dipendenza dalle risorse vergini e diminuisce l'impatto ambientale della produzione delle carte di credito. Produzione e Riciclo La produzione di carte di credito inizia con la creazione di un foglio di materiale plastico, che viene poi stampato, tagliato e inciso con i dati del titolare della carta. La fabbricazione di un microchip e l'installazione di una banda magnetica sono passaggi successivi cruciali, seguiti da test rigorosi per assicurare la conformità agli standard di sicurezza. Nonostante l'incremento nell'uso di carte virtuali e sistemi di pagamento mobile, la produzione annua di carte di credito fisiche rimane significativa, con stime che superano i miliardi di unità a livello globale. Il tasso di riciclo, tuttavia, è ancora basso, in parte a causa della complessità dei materiali coinvolti e della mancanza di infrastrutture dedicate. Iniziative volte ad aumentare la raccolta e il riciclo delle carte scadute o dismesse stanno guadagnando terreno, con alcune aziende che offrono programmi di ritorno specifici per le carte di credito. Curiosità del Mercato Personalizzazione: l'industria delle carte di credito ha visto una crescente domanda di personalizzazione, con clienti che desiderano design unici o la possibilità di aggiungere immagini personalizzate sulle loro carte. Carte ecologiche: alcune banche e istituti di credito hanno iniziato a offrire carte prodotte esclusivamente con materiali sostenibili o riciclati, rispondendo alla crescente consapevolezza ambientale dei consumatori. Tecnologia contactless: l'adozione di tecnologia contactless ha accelerato l'uso delle carte di credito, rendendo le transazioni più rapide e convenienti. Storia delle Carte di Credito La storia delle carte di credito risale agli anni '20 negli Stati Uniti, quando furono introdotte come metodo di pagamento per i clienti VIP di alberghi e stazioni di servizio. Tuttavia, il concetto di carta di credito come lo conosciamo oggi si è sviluppato negli anni '50, con l'introduzione della Diners Club Card, seguita dalla American Express e dalla Bank of America Card, che in seguito divenne Visa. Queste prime carte erano generalmente fatte di cartone e venivano accettate solo in un limitato numero di stabilimenti. Da allora, l'industria delle carte di credito ha visto innovazioni rivoluzionarie, inclusa l'introduzione di bande magnetiche, microchip e tecnologie di sicurezza avanzate, trasformando il modo in cui consumiamo e gestiamo le nostre finanze. Mentre l'industria delle carte di credito continua ad evolversi, con un occhio di riguardo verso soluzioni più sostenibili e tecnologicamente avanzate, l'adozione di polimeri riciclati rappresenta un passo importante verso la riduzione dell'impatto ambientale di questi strumenti di pagamento indispensabili. Questa transizione non solo rispecchia le crescenti esigenze ambientali ma segnala anche un cambiamento nel comportamento dei consumatori, sempre più orientati verso scelte etiche e sostenibili. Il futuro delle carte di credito sembra orientarsi verso l'innovazione continua, sia in termini di materiali e processi produttivi sia nella funzionalità e sicurezza. Le sfide legate al riciclo e allo smaltimento delle carte di credito richiedono un impegno congiunto da parte delle aziende produttrici, dei consumatori e delle autorità normative per sviluppare soluzioni efficaci che promuovano l'economia circolare. Inoltre, l'emergere di tecnologie digitali e di sistemi di pagamento alternativi potrebbe ridurre la necessità di carte fisiche, spostando l'attenzione verso soluzioni completamente virtuali. Tuttavia, fino a quando la carta di credito fisica rimarrà un elemento fondamentale nel portafoglio dei consumatori, il suo impatto ambientale e le strategie per la sua mitigazione rimarranno argomenti di cruciale importanza. La storia delle carte di credito, dalla loro creazione come semplici strumenti di carta per un'élite ristretta alla loro attuale incarnazione come simboli di accessibilità finanziaria e innovazione tecnologica, riflette l'evoluzione della società moderna e delle sue priorità. Man mano che ci avviciniamo a un futuro più sostenibile, il ruolo delle carte di credito e la loro produzione continueranno ad adattarsi, dimostrando la capacità dell'industria di rispondere alle sfide ambientali senza compromettere la sicurezza e la comodità degli utenti. In conclusione, la produzione di carte di credito, l'uso di materiali riciclati e la storia di questo strumento finanziario offrono uno sguardo affascinante sull'intersezione tra tecnologia, economia e sostenibilità.

SCOPRI DI PIU'
https://www.arezio.it/ - Il Fascino del Riciclo della Seta
Marco Arezio - Consulente materie plastiche Il Fascino del Riciclo della Seta
Economia circolare

Un viaggio nella circolarità tessile dove la seta è da sempre regina Il mondo del tessile si immerge sempre più nella circolarità, cercando soluzioni sostenibili per ridurre l'impatto ambientale dell'industria della moda. Tra le molte fibre naturali, la seta si distingue per la sua bellezza e la sua versatilità, tuttavia, anche questo tessuto lussuoso può essere parte integrante dell'economia circolare. In questo articolo, esploreremo il processo di riciclo della seta, dall'inizio alla fine, per comprendere come questa antica fibra possa trovare nuova vita attraverso pratiche sostenibili. Il Ciclo di Vita della Seta La seta ha una storia ricca e affascinante, che inizia con il baco da seta e continua attraverso la filatura, la tessitura e la produzione di capi pregiati. Tuttavia, quando i tessuti di seta raggiungono la fine della loro vita utile, invece di essere considerati rifiuti, possono essere trasformati in risorse preziose attraverso il riciclo. Il Processo di Riciclo della SetaIl processo industriale di riciclo della seta coinvolge diversi passaggi chiave per trasformare i tessuti di seta usati in fibre riutilizzabili. Vediamo una panoramica dei principali passaggi industriali: Raccolta e Selezione dei Tessuti Usati: Il primo passo consiste nella raccolta dei tessuti di seta usati da varie fonti, come abiti vecchi, scarti di produzione e tessuti d'arredamento. Questi tessuti vengono quindi selezionati e classificati in base alla qualità, al colore e alla composizione. Pulizia e Pretrattamento: I tessuti raccolti possono contenere sporco, macchie o altri contaminanti che devono essere rimossi prima del processo di riciclo. Pertanto vengono sottoposti a un processo di pulizia e pretrattamento per eliminare qualsiasi residuo indesiderato. Destrutturazione dei Tessuti: Dopo la pulizia, i tessuti vengono destrutturati per separare le fibre di seta dalle altre componenti del tessuto, come il cotone o il poliestere. Questo processo può avvenire meccanicamente, utilizzando macchinari appositi che rompono e separano il tessuto in fibre più piccole, oppure chimicamente, mediante l'uso di solventi o altre sostanze chimiche per dissolvere o disgregare le componenti non desiderate. Filatura delle Fibre: Le fibre di seta estratte vengono quindi filate per creare filati utilizzabili nella produzione di nuovi tessuti. Questo processo può avvenire utilizzando metodi tradizionali di filatura a mano o macchinari industriali più moderni, a seconda delle esigenze e delle capacità del produttore. Tessitura o Maglieria: I filati di seta riciclata vengono infine tessuti o lavorati a maglia per creare nuovi tessuti o capi di abbigliamento. Questo passaggio può includere la produzione di tessuti per abbigliamento, biancheria per la casa, accessori e molto altro ancora. Finitura e Trattamenti Aggiuntivi: Una volta completata la tessitura o la maglieria, i tessuti possono essere sottoposti a ulteriori trattamenti per migliorarne le proprietà o l'aspetto. Questi trattamenti possono includere il lavaggio, la tintura, la stampa o la rifinitura per conferire al tessuto la texture desiderata o per aggiungere caratteristiche speciali. Questi passaggi industriali rappresentano una panoramica generale del processo di riciclo della seta. Tuttavia, è importante notare che le pratiche specifiche possono variare a seconda delle tecnologie e delle preferenze dei produttori, ma l'obiettivo finale rimane quello di trasformare i tessuti di seta usati in risorse preziose e sostenibili. Applicazioni del Tessuto RiciclatoIl tessuto di seta riciclata può essere utilizzato in una vasta gamma di applicazioni, che vanno dall'abbigliamento alla biancheria per la casa e agli accessori. Grazie alle sue proprietà naturali, come la morbidezza e la traspirabilità, la seta riciclata offre un'alternativa sostenibile ai tessuti vergini senza compromettere lo stile o la qualità. Benefici Ambientali e SocialiIl riciclo della seta porta con sé una serie di benefici ambientali e sociali. Riduce la dipendenza dalle risorse naturali limitate, come il guscio di baco da seta, e contribuisce a ridurre i rifiuti tessili destinati alla discarica. Inoltre, promuove pratiche commerciali più sostenibili e può sostenere comunità locali attraverso l'occupazione in imprese di riciclo tessile. Il riciclo della seta rappresenta un'opportunità emozionante per ridurre l'impatto ambientale dell'industria tessile e promuovere la circolarità nel settore della moda. Attraverso un processo di raccolta, destrutturazione e riutilizzo, i tessuti di seta possono trovare una nuova vita, conservando il loro fascino e la loro eleganza intrinsechi. Investire nell'economia circolare della seta non solo beneficia l'ambiente, ma anche il settore tessile nel suo complesso, spingendo verso una moda più sostenibile e consapevole.

SCOPRI DI PIU'
https://www.arezio.it/ - Il Futuro delle Materie Prime e l'Impatto sull'Economia Circolare
Marco Arezio - Consulente materie plastiche Il Futuro delle Materie Prime e l'Impatto sull'Economia Circolare
Economia circolare

Nonostante gli sforzi per far crescere l'economia circolare e il riciclo, il consumo delle risorse della terra non diminuisce, anzi aumenta L'economia circolare, un concetto centrale nel panorama ambientale odierno, si trova di fronte a nuove sfide, di cui una delle più significative è l'aumento previsto del 60% nell'estrazione delle materie prime entro il 2060. Questo scenario solleva interrogativi cruciali sul nostro approccio attuale alla gestione delle risorse e sottolinea l'importanza di rafforzare e promuovere pratiche sostenibili. L'aumento dell'estrazione e le sue implicazioni L'incremento del 60% nell'estrazione delle materie prime rappresenta una crescita sostanziale che potrebbe influenzare negativamente gli sforzi per ridurre l'impatto ambientale. Attualmente, molte industrie si affidano a risorse naturali non rinnovabili per la produzione di beni di consumo. Questo aumento potrebbe portare a un esaurimento accelerato delle risorse, mettendo a rischio la stabilità ecologica e la disponibilità di tali materiali. Le sfide per l'economia circolare In un contesto in cui l'estrazione di materie prime è destinata a crescere in modo significativo, l'economia circolare deve affrontare diverse sfide. Una delle principali consiste nel rivedere e rafforzare i processi di riciclo e riutilizzo, incentivando pratiche che minimizzino la dipendenza dalle risorse vergini. Ciò richiede una collaborazione più stretta tra imprese, governi e consumatori per sviluppare e adottare soluzioni innovative. La centralità della piattaforma rMIX In questo contesto, la piattaforma rMIX riveste un ruolo cruciale nel facilitare l'interazione tra coloro che offrono e cercano prodotti riciclati. Attraverso questa piattaforma, è possibile promuovere attivamente la circolarità economica, consentendo agli operatori di accedere a risorse rinnovabili e di qualità senza aumentare la pressione sull'estrazione delle materie prime. Un ambiente digitale che favorisce l'economia circolare è fondamentale per raggiungere gli obiettivi di sostenibilità. La necessità di un approccio olistico Affrontare l'aumento previsto dell'estrazione delle materie prime richiede un approccio olistico. Oltre a incoraggiare l'uso di materiali riciclati, è essenziale investire in ricerca e sviluppo per scoprire alternative sostenibili e ridurre la dipendenza dalle risorse naturali. Inoltre, la sensibilizzazione e l'educazione sono fondamentali per coinvolgere la società nella transizione verso un'economia più circolare. In conclusione, il futuro dell'estrazione delle materie prime rappresenta una sfida significativa per l'economia circolare. Tuttavia, con l'impegno collettivo, l'innovazione e l'uso di piattaforme come rMIX, possiamo mitigare gli impatti negativi e creare un ambiente sostenibile per le generazioni future. L'economia circolare è la chiave per bilanciare la crescita economica con la conservazione delle risorse, e oggi più che mai, la collaborazione è essenziale per raggiungere questo obiettivo.

SCOPRI DI PIU'
https://www.arezio.it/ - Cosa è la Carta da Macero e come si Ricicla
Marco Arezio - Consulente materie plastiche Cosa è la Carta da Macero e come si Ricicla
Economia circolare

Un processo di riciclo indispensabile per ridurre il consumo forestale a scopi industrialiLa carta da macero è un elemento essenziale nel ciclo di riciclo della carta, contribuendo alla sostenibilità ambientale e alla riduzione della deforestazione. Esaminiamo da cosa è costituita la carta da macero e il processo di riciclo che la trasforma in un materiale utile e eco-friendly. 1. Composizione della Carta da Macero La carta da macero è principalmente costituita da vecchi prodotti di carta e cartone raccolti attraverso il processo di riciclo. Questi materiali includono giornali, scatole di cartone, carta da ufficio, opuscoli e altri elementi di carta utilizzati quotidianamente. La composizione può variare, ma l'obiettivo è di utilizzare materiale precedentemente prodotto piuttosto che ricorrere a fibre vergini. 2. Raccolta e Separazione La prima fase del riciclo della carta da macero inizia con la sua raccolta. Le aziende specializzate recuperano questi materiali dai rifiuti solidi urbani. Dopo la raccolta, i materiali vengono separati in base alla qualità e alla tipologia. 3. Triturazione e Rottura delle Fibre Dopo la raccolta, i materiali che compongono la carta da macero vengono sottoposti a processi di triturazione e rottura delle fibre. Questo passaggio riduce la carta in piccoli frammenti, creando una polpa grezza che può essere lavorata per formare nuovi fogli di carta. 4. Pulizia e Sbiancamento La polpa ottenuta viene successivamente pulita per rimuovere inchiostri, collanti e altri contaminanti. Il processo di sbiancamento può essere incluso per migliorare la qualità e l'aspetto del prodotto finale. Tecniche ecocompatibili vengono spesso preferite per ridurre l'impatto ambientale. 5. Formazione dei Fogli Dopo la preparazione della polpa, si procede alla formazione dei nuovi fogli di carta. Questo avviene attraverso processi di pressatura e asciugatura, garantendo la creazione di fogli di carta uniformi e di qualità. 6. Formazione di Bobine e Taglio I fogli di carta prodotti vengono quindi avvolti in bobine o tagliati in formati specifici, a seconda delle esigenze del mercato. Questa fase è cruciale per preparare la carta da macero per l'uso in una varietà di applicazioni. 7. Utilizzo e Applicazioni La carta da macero riciclata può essere utilizzata in numerosi settori, tra cui la produzione di carta igienica, cartone ondulato, carta da stampa, e altro ancora. Il suo utilizzo riduce la dipendenza dalle fibre vergini, preservando le risorse naturali e riducendo l'impatto ambientale. 8. Ciclo di Vita Sostenibile La carta da macero completa il suo ciclo di vita sostenibile quando, alla fine della sua utilità, viene di nuovo raccolta e sottoposta al processo di riciclo. Questo ciclo continua, contribuendo a preservare le foreste e a ridurre la produzione di rifiuti. In conclusione, la carta da macero è un componente fondamentale del ciclo di riciclo della carta. Il suo processo di produzione e riciclo gioca un ruolo cruciale nella riduzione dell'impatto ambientale e nella promozione di pratiche sostenibili nell'industria cartaria.

SCOPRI DI PIU'
https://www.arezio.it/ - Come Riciclare e Riutilizzare i Fanghi Ceramici
Marco Arezio - Consulente materie plastiche Come Riciclare e Riutilizzare i Fanghi Ceramici
Economia circolare

Attraverso vari processi, tra cui la chiariflocculazione, si crea una nuova materia prima riciclata da impiegare in molti campiI fanghi ceramici sono sottoprodotti della produzione di ceramica, composti da argilla, silice e altri materiali e possono essere riutilizzati o riciclati in vari settori, come l'edilizia o l'agricoltura. Questi si formano durante il processo di lavorazione della ceramica in tutte le sue forme, infatti, quando si prepara l'argilla per la produzione di lavabi, bidet, water, piatti doccia e molti altri elementi, è comune aggiungere acqua e altri materiali. Infatti, durante il processo di modellatura e lavorazione, l'acqua viene spesso utilizzata per ottenere la giusta consistenza dell'argilla. Successivamente, durante la cottura delle ceramiche, l'acqua presente nell'argilla evapora, lasciando residui che diventano i fanghi ceramici. Come abbiamo detto, i fanghi ceramici sono principalmente costituiti da argilla, silice e altri materiali che sono presenti nell'argilla utilizzata nel processo di produzione, tuttavia, la composizione chimica esatta può variare in base al tipo di argilla utilizzata e ai processi di produzione specifici. Come raccogliere e riciclare i fanghi ceramici La raccolta e il riciclo dei fanghi ceramici può essere gestita attraverso i seguenti passaggi: Separazione Durante il processo di produzione è importante separare i fanghi ceramici dagli altri materiali di scarto. Ciò può avvenire attraverso sistemi di filtraggio o sedimentazione. Stoccaggio I fanghi ceramici separati devono essere stoccati in modo adeguato, per impedire contaminazioni o dispersioni. Potrebbero essere utilizzati contenitori o vasche dedicate. Analisi della composizione Prima del riciclo, è consigliabile condurre analisi della composizione chimica dei fanghi ceramici per determinare le loro proprietà. Queste informazioni guideranno l'efficacia del riciclo in diverse applicazioni. Scelta dell'applicazione di riciclo In base alle analisi, si può decidere l'applicazione specifica per il riciclo, come l'utilizzo in edilizia, agricoltura o nell'industria ceramica. Cosa è il processo di chiariflocculazione per il recupero dei fanghi ceramici La chiariflocculazione è un processo utilizzato nel trattamento delle acque per rimuovere particelle sospese e sostanze colorate attraverso l'aggiunta di agenti chimici chiamati flocculanti e coagulanti. Questo processo è composto dalle seguenti fasi: Coagulazione In questa fase, viene aggiunto un coagulante all'acqua grezza. Il coagulante favorisce la formazione di flocculi, agglomerati di particelle fini, che rendono più facile la loro rimozione successiva. Mescolamento o Agitazione Dopo l'aggiunta del coagulante, l'acqua viene mescolata o agitata per promuovere la formazione di flocculi più grandi. Questo processo di agitazione facilita la coesione delle particelle sospese. Chiarificazione o Sedimentazione La miscela di acqua e flocculi viene lasciata riposare in un'apposita vasca di sedimentazione. Durante questo periodo, i flocculi sedimentano sul fondo della vasca, formando una massa più densa di particelle. Estrazione dell'Acqua Chiara L'acqua chiara, priva dei flocculi sedimentati, viene estratta dalla parte superiore della vasca di sedimentazione. Questa acqua è significativamente più pulita rispetto a quella iniziale. Filtrazione In alcuni casi, la chiariflocculazione può essere seguita da un processo di filtrazione per rimuovere eventuali particelle residue rimaste nell'acqua. Disposizione dei Fanghi I flocculi sedimentati, noti anche come fanghi di sedimentazione, vengono rimossi dalla parte inferiore della vasca e spesso destinati a ulteriori trattamenti o smaltiti in modo appropriato. Come si riutilizzano i fanghi ceramici I fanghi ceramici possono essere riutilizzati in diversi settori: Edilizia Possono essere incorporati in materiali da costruzione come mattoni o malte, contribuendo a migliorare le proprietà fisiche del materiale. Agricoltura Possono essere utilizzati come correttivi del suolo per migliorare la fertilità e la struttura del terreno grazie alla presenza di argilla e altri minerali. Industria ceramica In alcuni casi, i fanghi ceramici possono essere riutilizzati nel processo di produzione di nuove ceramiche, riducendo così gli sprechi. Cementifici Possono essere utilizzati come additivi nella produzione di cemento, contribuendo alla riduzione del consumo di materiali vergini. Il riutilizzo dipende dalla composizione specifica dei fanghi ceramici e dalle esigenze dell'applicazione. Come usare i fanghi ceramici in agricoltura L'utilizzo dei fanghi ceramici in agricoltura può contribuire a migliorare la fertilità del terreno e favorire una gestione sostenibile delle risorse. Tuttavia, è fondamentale adottare un approccio oculato e monitorare attentamente l'effetto sulle colture e sull'ecosistema. Per utilizzare i fanghi ceramici in agricoltura bisogna tenere in considerazione le seguenti fasi: Analisi del fango ceramico Prima di utilizzare i fanghi ceramici in agricoltura, effettuare un'analisi della composizione per valutarne le proprietà e assicurarti che siano adatti all'uso nel tuo terreno. Preparazione del terreno E’ possibile incorporare i fanghi ceramici nel terreno durante la preparazione del suolo. Questi possono migliorare la struttura del terreno, aumentare la capacità di ritenzione dell'acqua e fornire nutrienti alle piante. Regolazione del pH E’ consigliabile verificare il pH del terreno dopo l'applicazione dei fanghi ceramici e apportare eventuali regolazioni necessarie per garantire un ambiente adatto alla crescita delle colture. Monitoraggio delle colture Sarebbe auspicabile osservare attentamente le colture per valutare l'impatto dei fanghi ceramici, monitorando la crescita, la salute delle piante e la resa per determinare l'efficacia dell'applicazione. Dosaggio adeguato Seguire le indicazioni sulla quantità di fango ceramico da applicare per evitare sovra o sotto-dosaggi. La quantità può variare in base al tipo di coltura e alle caratteristiche del terreno. Rotazione delle colture Considerare l'implementazione della rotazione delle colture per massimizzare i benefici dei fanghi ceramici e prevenire eventuali accumuli di nutrienti o elementi. Qual vantaggi si apportano alle colture con l’uso dei fanghi ceramici L'uso dei fanghi ceramici in agricoltura può offrire diversi vantaggi per le colture, tra cui: Miglioramento della Struttura del Terreno I fanghi ceramici, ricchi di argilla e altri minerali, possono migliorare la struttura del terreno, aumentando la sua capacità di trattenere acqua e migliorando la porosità. Fornitura di Nutrienti Questi scarti possono contenere sostanze nutritive come azoto, fosforo e potassio, che sono essenziali per la crescita delle piante. I suddetti nutrienti possono essere gradualmente rilasciati nel terreno, beneficiando le colture nel lungo termine. Aumento della Capacità di Ritenzione dell'Acqua La presenza di argilla nei fanghi contribuisce a migliorare la capacità del terreno di trattenere acqua, riducendo la necessità di irrigazione frequente. Riduzione dell'Erosione del Suolo La migliorata struttura del terreno grazie ai fanghi ceramici può contribuire a ridurre l'erosione del suolo, proteggendo così le radici delle piante. Mineralizzazione del Terreno I minerali presenti nei fanghi possono contribuire alla mineralizzazione del terreno, arricchendolo con elementi essenziali per la crescita delle piante. Riduzione degli Sprechi L'uso dei fanghi ceramici rappresenta una forma di riciclo industriale, contribuendo a ridurre gli sprechi e a promuovere pratiche agricole più sostenibili. Come utilizzare i fanghi ceramici nei prodotti per l’edilizia Per utilizzarli nei prodotti edili, puoi considerare diverse applicazioni che sfruttano le proprietà di questi materiali. Ecco alcuni modi comuni: Malte e Intonaci I fanghi ceramici possono essere incorporati nelle malte e negli intonaci durante la fase di miscelazione, infatti, contribuiscono a migliorare le proprietà meccaniche e termiche del materiale finale. Laterizi e Mattoni I fanghi possono essere utilizzati come componente nella produzione di laterizi e mattoni, di fatto la loro presenza può influenzare la resistenza e la durabilità del prodotto finito. Materiali da Costruzione Leggeri Nei processi di produzione di materiali da costruzione leggeri, come pannelli isolanti, i fanghi ceramici possono essere incorporati per apportare leggerezza e migliorare le caratteristiche isolanti. Miscelazione con Aggregati Possono essere miscelati con aggregati (come sabbia o ghiaia) per la produzione di calcestruzzo leggero o massetti alleggeriti. Cappotti Termoisolanti E’ possibile utilizzarli nella produzione di cappotti termoisolanti per migliorare le proprietà isolanti dei rivestimenti esterni degli edifici. Blocchi Prefabbricati I fanghi ceramici possono essere integrati nella produzione di blocchi prefabbricati, offrendo proprietà specifiche al materiale. Come usare i fanghi ceramici nella produzione di cemento Per utilizzare i fanghi ceramici nella produzione di cemento, sarebbe consigliabile tenere in considerazioni i seguenti passaggi: Analisi della Composizione Prima di tutto, effettuare un'analisi dettagliata della composizione chimica e fisica dei fanghi ceramici. Questo aiuterà a comprendere le proprietà specifiche del materiale e a determinare la quantità ottimale da utilizzare. Dosaggio E’ importante determinare la quantità di fango ceramico da aggiungere al cemento, infatti, il dosaggio influenzerà le caratteristiche del cemento finale, quindi è consigliabile trovare un equilibrio che mantenga la qualità del prodotto. Integrazione nella Miscelazione Durante la fase di produzione del cemento, è possibile integrare i fanghi ceramici nella miscela aggiungendoli insieme agli altri componenti come cemento Portland, ghiaia, sabbia e acqua. Prove di Laboratorio Eseguire prove di laboratorio per valutare le prestazioni del nuovo composto cementizio, misurando la resistenza compressiva, l'assorbimento d'acqua e altre caratteristiche per garantire che il cemento soddisfi gli standard richiesti. Regolazioni Se necessario, si possono apportare regolazioni al dosaggio dei fanghi ceramici in base ai risultati delle prove di laboratorio. Questo processo di sperimentazione può essere cruciale per ottenere il giusto equilibrio tra prestazioni e quantità di fango ceramico. Come è perché utilizzare i fanghi ceramici nella produzione di ceramiche L'utilizzo dei fanghi ceramici nella produzione di ceramiche presenta diversi motivi e vantaggi: Recupero di Materiali L'impiego di fanghi ceramici consente il recupero e il riutilizzo di materiali residui derivanti dalla produzione di ceramiche, contribuendo a ridurre gli sprechi e a promuovere pratiche sostenibili. Miglioramento delle Caratteristiche dell'Argilla L'inclusione di questi scarti può migliorare le caratteristiche dell'argilla utilizzata nella produzione di ceramiche, influenzando positivamente la lavorabilità e le proprietà fisiche del materiale crudo. Riduzione dei Costi L'utilizzo dei fanghi ceramici può ridurre i costi associati all'acquisto di nuovi materiali, contribuendo così a una gestione più efficiente delle risorse finanziarie dell'azienda. Diversificazione Estetica I rifiuti delle lavorazioni a base di argilla possono aggiungere varietà estetica alle ceramiche, introducendo colorazioni o effetti speciali che derivano dalla composizione specifica dei fanghi. Sostenibilità Ambientale Incorporare fanghi ceramici nella produzione di ceramiche promuove una pratica più sostenibile, riducendo la necessità di smaltire i residui in discarica e limitando l'estrazione di nuove risorse.

SCOPRI DI PIU'
https://www.arezio.it/ - Esiste una relazione tra l’aspirina e la plastica riciclata?
Marco Arezio - Consulente materie plastiche Esiste una relazione tra l’aspirina e la plastica riciclata?
Economia circolare

I ricercatori hanno scoperto evidenze tra l'aspirina e la plastica riciclata. Vediamo quali sonoUn gruppo di ricercatori ha scoperto che l’idrolisi acida di un polimero vinilico riciclato induce ad una scomposizione chimica in acido salicilico e acido acetico. Questi acidi, debitamente trattati, sono i componenti per l’aspirina. Siamo pervasi ormai ogni giorno da notizie sull’inquinamento della plastica, sulla difficoltà di riciclare tutta quella che viene giornalmente prodotta, sulle difficoltà tecniche del processo di recupero meccanico delle varie tipologie di polimeri che troviamo nei prodotti e vediamo con speranza le nuove forme di riciclo non meccanico che si stanno studiando e testando. Esistono polimeri decisamente difficili da riciclare, dove le tecnologie molecolari di scomposizione dei componenti chimici potranno dare speranze industriali, per risolvere i vari problemi tecnici che comportano una percentuale di riciclo così bassa nel mondo. La via più sbrigativa, secondo alcune scuole di pensiero attuali, sarebbe quella di seguire le ideologie del movimento PlasticFree, che segue l’utopia di vivere senza plastica. Oggi, se ci guardiamo intorno, capiamo che nel breve periodo sembra impossibile sostituire tutti i prodotti plastici con prodotti alternativi che abbiano un costo sostenibile e un impatto ambientale corretto. Sarà sicuramente una strada da seguire quella di evitare la produzione di prodotti plastici usa e getta, in quanto la plastica nasce per durare. Una buona notizia viene dall’Universitàdi Shinshu, dove un ricercatore ha scoperto che l’idrolisi acida di un polimero vinilico porta alla formazione di acido salicilico e acido acetico, componenti di base dell’aspirina, che potrebbero, tramite passaggi chimici, ritornare a trasformarsi i composti in polimeri vinilici. Ma cosa sono i polimeri vinilici? Questi polimeri sono composti da monomeri vinilici, in pratica sono piccole molecole create da un doppio legame carbonio-carbonio e costituiscono la seconda più famosa ed utilizzata famiglia di polimeri. Tuttavia il vinile riciclato è di difficile utilizzo, in quanto instabile e di difficile manipolazione industriale, quindi i ricercatori stanno studiando i meccanismi di varie reazioni chimiche, per capire se forniranno indicazioni per nuove applicazioni sui vinili riciclabili e sulle sue applicazioni su scala industriale.Categoria: notizie - economia circolare - aspirina

SCOPRI DI PIU'
https://www.arezio.it/ - La storia del Calcestruzzo: dai Romani al Moderno Riciclato
Marco Arezio - Consulente materie plastiche La storia del Calcestruzzo: dai Romani al Moderno Riciclato
Economia circolare

E’ stato un legante essenziale per lo sviluppo di città e vie di comunicazione, fino ai giorni nostri con i nuovi calcestruzzi ecosostenibiliSi può dire che il legante cementizio, noto come calcestruzzo, sia stato davvero una rivoluzione sin dalle epoche più antiche, per la crescita dei popoli, migliorando la solidità e il confort abitativo delle case, costruendo linee di comunicazioni più efficienti e sicure e creando monumenti che la storia ci ha donato perché solidi e duraturi. Dai Romani al XXI° Secolo La storia del calcestruzzo risale a molti secoli fa, a partire dalle antiche civiltà dell'Egitto e della Mesopotamia, dove veniva utilizzato, anche se con una ricetta grezza, per creare strutture come le piramidi e i templi. Tuttavia, la vera diffusione del calcestruzzo, come materiale da costruzione, avvenne durante l'Impero Romano. Questi, infatti, svilupparono una ricetta che includeva l'uso di calce, sabbia, acqua e una forma di pozzolana, un tipo di cenere vulcanica. L'opus caementicium era molto versatile e veniva utilizzato per creare strutture come ponti, acquedotti, basiliche, anfiteatri e persino l'imponente Colosseo. La sua versatilità e resistenza gli permisero di sopportare pesanti carichi e di resistere all'usura del tempo. Per ottenere l'opus caementicium, veniva preparato un impasto utilizzando una miscela di calce (calce viva o idrata) e sabbia. Successivamente, si aggiungeva acqua per creare una pasta lavorabile e la pozzolana, aggiunta come materiale legante, conferiva al calcestruzzo una maggiore resistenza e durabilità. Un altro tipo di calcestruzzo utilizzato dagli antichi Romani era l'"opus reticulatum". Questo stile di muratura consisteva in una disposizione di piccoli blocchi di calcestruzzo rettangolari, generalmente posti a formare un motivo reticolare. L'opus reticulatum veniva spesso utilizzato per rivestire le superfici esterne delle strutture in muratura, conferendo loro un aspetto distintivo. In sintesi, l'uso del calcestruzzo durante l'epoca romana fu un importante contributo all'architettura e all'ingegneria. La combinazione di calce, sabbia, acqua e pozzolana permise ai Romani di realizzare strutture durature e resistenti, lasciando un'eredità che ancora oggi si può ammirare in molte rovine romane. Dopo la caduta dell'Impero Romano, l'uso del calcestruzzo diminuì notevolmente in Europa occidentale durante il periodo medievale. Tuttavia, in altre parti del mondo, come nell'architettura islamica e nell'architettura bizantina, il calcestruzzo continuò ad essere utilizzato. Durante la Rivoluzione Industriale, questo legante conobbe una rinascita grazie ai progressi nella tecnologia di produzione del cemento. Nel XIX secolo, l'ingegnere francese Joseph-Louis Lambot sviluppò il cemento armato, una combinazione di calcestruzzo e acciaio, che rese possibile la costruzione di strutture ancora più resistenti. Nel 1848, Lambot creò un piccolo battello di calcestruzzo armato che presentò all'Esposizione Universale di Parigi. Questa invenzione fu il primo utilizzo documentato di cemento armato. Lambot incorporò una struttura di ferro all'interno dell’impasto per aumentarne la resistenza e la durabilità, aprendo la strada a un nuovo modo di costruire. L'idea di Lambot non ottenne subito grande riconoscimento, ma il suo lavoro aprì la strada a ulteriori sviluppi nell'utilizzo del cemento armato. Successivamente, nel corso del XX secolo, ingegneri come François Hennebique e Auguste Perret perfezionarono e diffusero l'uso del cemento armato, contribuendo alla sua adozione su larga scala nell'industria delle costruzioni. Da allora, il calcestruzzo è diventato uno dei materiali da costruzione più utilizzati al mondo, ed ampiamente impiegato per la costruzione di edifici, strade, dighe, ponti e molte altre infrastrutture. Negli ultimi decenni, sono state sviluppate nuove tecnologie per migliorare le prestazioni del prodotto, come l'uso di additivi per aumentarne la resistenza e la durabilità. In sintesi, la storia del calcestruzzo è una lunga e affascinante evoluzione, che ha visto questo materiale diventare uno dei pilastri della moderna ingegneria e dell'architettura. Cosa è il calcestruzzo riciclato Il calcestruzzo riciclato è un tipo di legante ottenuto tramite il riciclaggio dei materiali di scarto, provenienti dalla demolizione o dalla rottura di strutture di calcestruzzo esistenti. Il processo di riciclaggio del calcestruzzo comporta solitamente la frantumazione delle porzioni di calcestruzzo di scarto in pezzi più piccoli, che vengono quindi selezionati in base alla dimensione e alla qualità. Dopo la selezione, i frammenti di calcestruzzo vengono lavati per rimuovere eventuali impurità e contaminanti. A questo punto, il materiale riciclato può essere utilizzato come aggregato per la produzione di nuovo calcestruzzo. L'utilizzo del calcestruzzo riciclato offre diversi vantaggi ambientali ed economici. Innanzitutto, consente di ridurre la quantità di rifiuti che finiscono nelle discariche, contribuendo così alla sostenibilità ambientale. Inoltre, l'utilizzo del calcestruzzo riciclato richiede meno energia e risorse rispetto alla produzione di uno vergine, riducendo l'impatto ambientale complessivo. Dal punto di vista economico, il calcestruzzo riciclato può essere un'opzione più conveniente rispetto al quello vergine, contribuendo a ridurre i costi di costruzione. Tuttavia, è importante tenere presente che il calcestruzzo riciclato potrebbe avere alcune limitazioni in termini di resistenza e qualità rispetto al calcestruzzo vergine. Pertanto, è necessario un adeguato controllo di qualità e la valutazione delle caratteristiche specifiche del calcestruzzo riciclato per garantirne l'idoneità all'uso in progetti specifici. Quali differenze tecniche esistono tra il calcestruzzo riciclato e quello con inerti naturali Il calcestruzzo riciclato, rispetto a quello realizzato con inerti naturali, può presentare alcune differenze tecniche e di prestazioni. Ecco alcune tra le più comuni: Composizione Il calcestruzzo riciclato utilizza inerti provenienti da materiali di scarto di strutture in cemento demolite, mentre quello con inerti naturali utilizza inerti provenienti da materiali naturali, come ghiaia e sabbia. Qualità degli inerti Gli inerti riciclati possono contenere impurità e contaminanti residui, come vernici, rivestimenti o materiali di rinforzo. Questi residui potrebbero influire sulla qualità e sulla resistenza del calcestruzzo riciclato. Nel calcestruzzo con inerti naturali, gli aggregati tendono ad essere di qualità controllata e privi di contaminanti. Resistenza A causa delle possibili impurità e della variabilità degli inerti riciclati, il calcestruzzo riciclato potrebbe presentare una resistenza leggermente inferiore rispetto a quello con inerti naturali. Tuttavia, con un adeguato controllo di qualità e una corretta selezione degli inerti riciclati, è possibile ottenere livelli di resistenza simili al calcestruzzo tradizionale. Durabilità La durabilità del calcestruzzo riciclato dipende dalla qualità degli inerti utilizzati e dalle caratteristiche del materiale di scarto riciclato. Alcuni studi suggeriscono che il calcestruzzo riciclato potrebbe essere meno resistente all'azione degli agenti aggressivi come la corrosione delle armature o l'attacco chimico rispetto al calcestruzzo con inerti naturali. Tuttavia, è possibile adottare misure correttive come l'uso di additivi o trattamenti superficiali per migliorare la durabilità del calcestruzzo riciclato. Sostenibilità Dal punto di vista ambientale, il calcestruzzo riciclato offre un vantaggio significativo rispetto a quello con inerti naturali, in termini di riduzione dei rifiuti di demolizione e dell'impatto ambientale complessivo legato all'estrazione di materiali naturali. Pertanto, il calcestruzzo riciclato è spesso considerato una scelta più sostenibile. Dove è consigliabile utilizzare il calcestruzzo riciclato Il calcestruzzo riciclato può essere utilizzato in diversi contesti e applicazioni. Ne riportiamo alcuni a livello esemplificativo: Strade e pavimentazioni Il calcestruzzo riciclato può essere utilizzato per la realizzazione di strade, autostrade, marciapiedi e altre pavimentazioni. In questi contesti può offrire una soluzione economicamente vantaggiosa e sostenibile, riducendo l'utilizzo di materiali vergini e la quantità complessiva di rifiuti di costruzione. Opere di ingegneria civile Può inoltre essere impiegato nella costruzione di opere di ingegneria civile come muri di sostegno, ponti, dighe e opere di drenaggio. Tuttavia, è importante valutare attentamente le specifiche tecniche richieste per il progetto e garantire che il calcestruzzo riciclato soddisfi i requisiti di resistenza e durabilità. Elementi prefabbricati Si può anche utilizzare per la produzione di elementi prefabbricati come blocchi di calcestruzzo, pavimenti prefabbricati, travi e pilastri. Il suo utilizzo, nella produzione di elementi prefabbricati, può contribuire alla riduzione dei costi di produzione e all'impatto ambientale complessivo. Opere di riqualificazione e ristrutturazione Il calcestruzzo riciclato può essere una scelta appropriata durante i progetti di riqualificazione o ristrutturazione, in cui sono disponibili materiali di scarto provenienti dalle strutture demolite. L'utilizzo del della versione riciclata, può ridurre la necessità di acquistare calcestruzzo vergine e contribuire alla sostenibilità del progetto. Quali paesi utilizzano maggiormente il calcestruzzo riciclato L'utilizzo del calcestruzzo riciclato ha avuto origine negli anni '70, quando si è iniziato a sperimentare ed adottare metodi per riciclare i materiali di scarto provenienti dalla demolizione delle strutture in calcestruzzo. Tuttavia, l'adozione su larga scala del calcestruzzo riciclato è avvenuta successivamente, negli anni '80 e '90, con lo sviluppo di tecniche più avanzate di triturazione, selezione e produzione di calcestruzzo riciclato. L'uso del calcestruzzo riciclato si è diffuso in vari paesi nel corso degli anni. Alcuni dei paesi in cui l'utilizzo del prodotto riciclato è particolarmente diffuso sono: Stati Uniti Gli Stati Uniti sono stati tra i pionieri nell'utilizzo del calcestruzzo riciclato. Negli anni '80, il riciclaggio del prodotto è stato ampiamente adottato in molti stati americani, per affrontare il problema dei rifiuti da costruzione e promuovere la sostenibilità ambientale. Paesi Europei Diversi paesi europei hanno adottato l'uso del calcestruzzo riciclato in modo significativo. Ad esempio, Paesi Bassi, Germania, Regno Unito, Francia e Svezia hanno incorporato il prodotto ecosostenibile nelle loro prassi di costruzione e nelle normative ambientali. Giappone Il Giappone ha sviluppato tecniche avanzate per il riciclaggio del calcestruzzo e ha fatto ampio uso del prodotto nella costruzione di strade e infrastrutture, soprattutto a partire dagli anni '90. Australia L'Australia ha fatto progressi significativi nell'utilizzo del calcestruzzo riciclato, soprattutto per la realizzazione di pavimentazioni stradali e infrastrutture. Numerose iniziative e progetti sono stati promossi per ridurre l'uso di materiali vergini e favorire l'impiego di quelli riciclati.

SCOPRI DI PIU'
https://www.arezio.it/ - Produzione, Tipologie e Riciclo delle Fibre di Vetro
Marco Arezio - Consulente materie plastiche Produzione, Tipologie e Riciclo delle Fibre di Vetro
Economia circolare

Un prodotto largamente usato nei prodotti più comuni che comporta un riciclo non banaleLe fibre di vetro sono diventate un supporto molto utile nella produzione di vari prodotti, nei campi più disparati, come il settore dei tessuti, della nautica e dell’edilizia. Dal punto di vista della circolarità dei prodotti, sia il cascame tessile che gli scarti edili che contengono le fibre, non sono elementi che possono essere riciclati con semplicità come molti altri prodotti. Come si produce la fibra di vetro riciclata La produzione della fibra di vetro riciclata ha la sua origine, principalmente, dai rottami delle bottiglie che provengono dalla raccolta differenziata e dal riciclo dei cascami tessili composti da filature con fibre di vetro. Infatti, la fibra di vetro riciclata può provenire da vari prodotti in fibra di vetro che sono giunti a fine vita utile, come i tessuti, le reti o altri rottami di vetro. Questi rifiuti vengono raccolti e separati da altri materiali non desiderati. I rifiuti di vetro vengono quindi triturati per ridurli in frammenti più piccoli. Questo passaggio aiuta a preparare gli scarti al successivo processo di fusione. I rottami e i cascami di vetro vengono fusi a temperature elevate. Durante la fusione, i frammenti si uniscono e formano un materiale fuso liquido o semiliquido chiamato vetro fuso. Il vetro fuso viene quindi filato per formare filamenti o fibre di vetro riciclata. Questo può essere fatto utilizzando metodi come l'estrazione del filo o la centrifuga. Durante la filatura, i filamenti di fibra di vetro si raffreddano e solidificano, formando fili continui di fibra di vetro riciclata. I filamenti di fibra di vetro riciclata vengono raffreddati e modellati secondo le esigenze specifiche dell'applicazione. Possono essere tagliati in lunghezze desiderate o lavorati in forme specifiche, come mattonelle, pannelli o altri prodotti. Infine, i filamenti di fibra di vetro riciclata possono essere utilizzati per produrre una varietà di prodotti, come isolanti termici, pannelli compositi, materiali da costruzione o altri materiali che richiedono le proprietà della fibra di vetro. Come vengono classificate le fibre di vetro Le fibre di vetro possono avere caratteristiche fisiche e chimiche differenti in base all’impiego per cui sono state progettate, vediamone alcune: Fibre di vetro E Le fibre di vetro E, abbreviazione di "E-Glass" (vetro E), sono le più comuni e ampiamente utilizzate. Sono realizzate principalmente a partire da rottami di bottiglie di vetro e presentano un'elevata resistenza meccanica, un buon isolamento elettrico e termico. Queste fibre sono utilizzate in applicazioni come isolanti termici, rinforzo di materiali compositi, isolamento acustico e nell'industria automobilistica. Fibre di vetro S Le fibre di vetro S, abbreviazione di "S-Glass" (vetro S), sono una variante rinforzata delle fibre di vetro E. Presentano una maggiore resistenza alla trazione, rigidità e resistenza alla corrosione rispetto alle fibre di vetro E. Sono spesso utilizzate in applicazioni che richiedono prestazioni eccezionali in termini di resistenza, come nel settore aerospaziale e nella produzione di attrezzature sportive ad alte prestazioni. Fibre di vetro C Le fibre di vetro C, abbreviazione di "C-Glass" (vetro C), sono ottenute utilizzando rottami di bottiglie di vetro mescolati con carbonato di calcio e altri additivi. Queste fibre presentano un'elevata resistenza chimica e termica, rendendole adatte per applicazioni che richiedono resistenza agli agenti chimici aggressivi e alte temperature, come nel settore chimico e nella produzione di filtri. Fibre di vetro AR Le fibre di vetro AR (Alkali Resistant, resistenti agli alcali) sono utilizzate in applicazioni che richiedono resistenza all'ambiente alcalino, ad esempio in calcestruzzo rinforzato. Le specifiche delle fibre di vetro possono variare a seconda delle necessità dell'applicazione finale, e possono essere personalizzate per fornire proprietà specifiche come la resistenza, la conducibilità termica, la resistenza all'abrasione, ecc. Come si ricicla il tessuto in fibra di vetro Il riciclaggio del tessuto in fibra di vetro può essere un processo complesso e dipende dalla struttura del tessuto stesso e dal suo utilizzo finale. Tuttavia, in generale, il processo di riciclaggio della fibra di vetro può includere i seguenti passaggi: Raccolta Raccogliere i rifiuti di tessuto in fibra di vetro e separarli da altri materiali. È importante assicurarsi che il tessuto in fibra di vetro sia privo di contaminanti come vernici, collanti o altri materiali che potrebbero compromettere il processo di riciclaggio. Triturazione Il tessuto in fibra di vetro viene quindi triturato in frammenti più piccoli, solitamente tramite un mulino o una macchina apposita. Questo passaggio aiuta a rompere il tessuto in fibra di vetro in pezzi più gestibili per il successivo processo di riciclaggio. Separazione Dopo la triturazione, i frammenti di fibra di vetro vengono sottoposti a un processo di separazione. Questo può essere fatto utilizzando metodi meccanici o fisici, come la separazione per densità o tramite l'utilizzo di separatori magnetici. Lo scopo di questo passaggio è separare la fibra di vetro dagli altri materiali presenti nel tessuto, come resine o leganti o materiali metallici. Fusione La fibra di vetro separata viene quindi fusa a temperature elevate. Questo processo di fusione trasforma la fibra di vetro in uno stato liquido o semiliquido. Filatura Dopo la fusione, la fibra di vetro fusa può essere filata in filamenti o fibre sottili. Come si ricicla la rete in fibra di vetro La rete in fibra di vetro è un materiale comune utilizzato in applicazioni come rinforzo strutturale, isolamento, filtri e materiali compositi. Il riciclo della rete in fibra di vetro può essere un processo più complesso rispetto al tessuto in fibra di vetro, ma esistono alcune possibilità di riciclaggio. Di seguito sono riportati alcuni dei passaggi generali coinvolti nel riciclaggio della rete in fibra di vetro: Raccolta Raccogliere le reti in fibra di vetro, assicurandosi che siano prive di contaminanti o di altri materiali che potrebbero compromettere il processo di riciclaggio. Triturazione Le reti in fibra di vetro vengono triturate per ridurle in frammenti più piccoli. Questo processo può essere eseguito utilizzando macchinari specializzati che frammentano la rete in fibra di vetro in pezzi piccoli. Separazione I frammenti di fibra di vetro ottenuti vengono quindi sottoposti a un processo di separazione per rimuovere eventuali contaminanti o materiali non desiderati. Questo può comportare l'utilizzo di metodi fisici o chimici per separare la fibra di vetro da altri materiali presenti nella rete. Fusione Dopo la separazione, la fibra di vetro può essere fusa a temperature elevate. La fusione rende la fibra di vetro liquida o semiliquida, consentendo di trasformarla in nuovi prodotti. Filatura o formatura La fibra di vetro fusa può essere filata in filamenti sottili o utilizzata per la formatura di nuovi prodotti. Quali applicazioni hanno le fibre di vetro riciclate Le fibre di vetro riciclate possono essere utilizzate in una varietà di applicazioni in diversi settori. Alcune delle applicazioni comuni delle fibre di vetro riciclate includono: Le fibre di vetro riciclate possono essere utilizzate come rinforzo in materiali compositi, come plastica rinforzata con fibra di vetro (FRP) o cemento rinforzato con fibra di vetro (GRC). Questi materiali compositi offrono una maggiore resistenza meccanica, leggerezza e durata. Trovano applicazioni nell'industria automobilistica, nel settore edile, nella produzione di attrezzature sportive e in molti altri settori. Le fibre di vetro riciclate possono essere utilizzate per la produzione di materiali isolanti termici ed acustici. Sono impiegate nella fabbricazione di pannelli isolanti per pareti, soffitti e pavimenti, offrendo un'elevata resistenza al calore e al suono. Questi materiali trovano applicazione in edifici residenziali, commerciali e industriali per migliorare l'efficienza energetica e ridurre la trasmissione del suono. Inoltre possono essere filate per produrre tessuti tecnici. Questi tessuti possono avere diverse caratteristiche, come resistenza al calore, isolamento elettrico, resistenza chimica o proprietà ignifughe. Trovano impiego in applicazioni come abbigliamento protettivo, rivestimenti termoisolanti, tende da teatro, filtri industriali e molto altro. Le fibre di vetro riciclate sono utilizzate nella produzione di filtri per l'industria, l'automotive, il trattamento dell'aria e l'industria del gas. Le loro proprietà di resistenza chimica, resistenza termica e capacità di trattenere particelle fini le rendono ideali per la fabbricazione di filtri ad alte prestazioni. Trovano inoltre notevole impiego anche nel campo dei materiali da costruzione, come malte, intonaci, piastrelle e prodotti prefabbricati. Questi materiali migliorano la resistenza, la durata e le proprietà termiche dei prodotti finali. Infine, sono utilizzate in una serie di prodotti industriali come cavi, tubi, condotti, contenitori elettrici e prodotti chimici resistenti. La loro resistenza elettrica, resistenza chimica e resistenza meccanica li rendono adatti a queste applicazioni. L'utilizzo delle fibre di vetro riciclate consente di ridurre la dipendenza dalle materie prime vergini e contribuisce alla riduzione dei rifiuti e all'economia circolare.

SCOPRI DI PIU'
https://www.arezio.it/ - Produzione di Pannelli Laminati in Legno e loro Riciclo
Marco Arezio - Consulente materie plastiche Produzione di Pannelli Laminati in Legno e loro Riciclo
Economia circolare

Nonostante i pannelli siano composti da legno riciclato la loro etichetta green stride con le difficoltà del ricicloNonostante il pannello laminato sia un prodotto composto da legno di scarto, quindi annoverabile tra i prodotti con una valenza green, in quanto questo processo può contribuire alla riduzione della deforestazione e allo sfruttamento delle risorse naturali, la loro circolarità comporta delle difficoltà molto importanti. Riciclare un pannello in legno laminato è, ancora ad oggi, abbastanza complicato in virtù dei componenti chimici che vengono aggiunti al legno per dare struttura al pannello.Vediamo come vengono prodotti i pannelli in legno laminato La prima fase consiste nella raccolta e nella selezione del legno riciclato. Questo può includere il recupero di legname proveniente da imballaggi, pallet, mobili usati o altre fonti di legno da riciclare. Il legno riciclato viene poi sottoposto a un processo di sgranatura e tritatura, per ridurlo in particelle di dimensioni adeguate. Questo può essere fatto utilizzando attrezzature specializzate, come trituratori o sgranatrici. Successivamente le particelle di legno riciclato vengono combinate con un legante, come resine o adesivi a base di legno, per formare un materiale compatto. Questo miscuglio viene quindi sottoposto a pressatura per formare un pannello laminato di legno. Infine, il pannello laminato di legno viene sottoposto ad un processo di laminazione. Questo implica l'applicazione di uno strato decorativo sulla superficie del pannello, che può essere una finitura in legno, una carta stampata o una pellicola di laminazione. Questo strato conferisce al pannello un aspetto estetico e può fornire protezione aggiuntiva. Per concludere la produzione, il pannello laminato viene tagliato nelle dimensioni desiderate e sottoposto a una fase di rifinitura, che può includere la levigatura, l'applicazione di rivestimenti protettivi o altre operazioni di finitura per migliorarne l'aspetto e la durabilità. Quali sostanze chimiche utilizzate per la produzione Nella produzione di pannelli in legno laminato, vengono utilizzate diverse sostanze chimiche che svolgono ruoli specifici durante il processo di fabbricazione. Le principali sono: Le resine o gli adesivi a base di legno sono essenziali per unire le particelle di legno e formare un pannello compatto. Alcuni esempi di resine comunemente utilizzate sono le resine ureiche, fenoliche o a base di melamina. Queste resine forniscono una forte adesione e contribuiscono alla stabilità e alla durabilità del pannello. I catalizzatori sono utilizzati per accelerare o controllare il processo di indurimento delle resine utilizzate nella laminazione del legno. I catalizzatori possono essere utilizzati in piccole quantità e possono includere sostanze chimiche come l'acetato di ammonio o l'acetato di calcio. Per ottenere l'aspetto desiderato dei pannelli laminati di legno, possono essere aggiunti coloranti o pigmenti alla resina. Questi coloranti possono essere sia organici che inorganici e vengono utilizzati per ottenere una vasta gamma di colori e finiture. In alcuni casi, possono essere aggiunti additivi antifiamma per migliorare la resistenza al fuoco dei pannelli in legno laminato. Gli additivi antifiamma possono ridurre la combustibilità del materiale e proteggere i pannelli da potenziali rischi di incendio. Durante il processo di produzione, possono essere utilizzati lubrificanti o agenti di rilascio per facilitare la lavorazione del legno e la rimozione dei pannelli dalle attrezzature. Questi agenti riducono l'attrito e consentono una migliore manipolazione del materiale. Che impatto ha sull’ambiente la produzione dei pannelli laminati Durante il processo di produzione dei pannelli laminati in legno, l'uso di alcune sostanze chimiche può potenzialmente contribuire all'emissione di inquinanti nell'ambiente. Gli inquinanti prodotti dipendono dalla specifica sostanza chimica utilizzata e dalle pratiche di gestione adottate. Alcuni possibili impatti ambientali associati all'uso di sostanze chimiche nella produzione dei pannelli laminati in legno includono: Emissione di composti organici volatili (COV) Alcune resine utilizzate nella laminazione del legno possono contenere COV che possono essere rilasciati nell'aria durante il processo di produzione. Questi COV possono contribuire all'inquinamento atmosferico e alla formazione di inquinanti atmosferici secondari come l'ozono troposferico. Rifiuti chimici Durante il processo di produzione, possono essere generati rifiuti chimici come scarti di resine, catalizzatori o additivi. La gestione inadeguata di questi rifiuti chimici potrebbe comportare l'inquinamento del suolo o delle acque superficiali se non vengono trattati o smaltiti correttamente. Impatti sull'ecosistema acquatico Se le acque di scarico contenenti sostanze chimiche non vengono trattate adeguatamente, possono essere rilasciate nell'ambiente acquatico, potenzialmente causando impatti negativi sugli organismi acquatici e sull'ecosistema. Alcune sostanze chimiche possono essere tossiche per i pesci, gli organismi acquatici o gli ecosistemi in generale. Consumo di risorse naturali La produzione di sostanze chimiche utilizzate nella produzione dei pannelli laminati in legno può richiedere l'utilizzo di risorse naturali come acqua, energia e materie prime. Il consumo eccessivo di queste risorse può avere un impatto ambientale significativo, inclusa la degradazione delle risorse idriche e l'emissione di gas serra derivante dalla produzione di energia.È importante sottolineare che l'impatto ambientale dipende da vari fattori, tra cui la gestione degli impianti, l'uso di tecnologie di controllo delle emissioni, le pratiche di smaltimento dei rifiuti e l'aderenza alle norme e ai regolamenti ambientali. Le aziende che producono pannelli laminati in legno devono adottare misure per minimizzare gli impatti ambientali, come l'adozione di tecnologie a basso impatto ambientale, il riciclo dei rifiuti e il trattamento adeguato delle acque di scarico. Inoltre, l'implementazione di sistemi di gestione ambientale e il rispetto delle normative ambientali sono fondamentali per ridurre gli impatti negativi sulla salute umana e sull'ambiente.Come si riciclano i pannelli di legno laminato Il riciclo dei pannelli di legno laminato può essere un processo complesso a causa della loro struttura composta da diversi strati di legno e resine. Tuttavia, ci sono alcune possibilità per il riciclaggio dei pannelli di legno laminato. Vediamone alcune: Recupero energeticoI pannelli possono essere utilizzati come combustibile per la produzione di energia termica o elettrica attraverso l'incenerimento controllato in impianti specializzati. Questo processo può contribuire alla produzione di energia rinnovabile. Triturazione e produzione di trucioli I pannelli di legno laminato possono essere triturati per ottenere trucioli di legno che possono essere utilizzati come materia prima per altre industrie, come la produzione di pannelli truciolari o di pannelli di fibra di legno. Rigenerazione dei materiali Alcuni pannelli di legno laminato possono essere sottoposti a processi di separazione e rigenerazione dei materiali. Questo può coinvolgere il recupero delle particelle di legno e il recupero delle resine per essere riutilizzate come materia prima in nuovi processi di produzione. Riutilizzo e riparazione I pannelli di legno laminato possono essere riutilizzati in altri progetti o possono essere riparati e riadattati per un utilizzo continuato. Questo può aiutare a prolungare la vita utile dei pannelli e ridurre la quantità di rifiuti prodotti. Riciclo dei componentiAlcuni componenti dei pannelli di legno laminato, come i rivestimenti di carta o i film di laminazione, possono essere riciclati separatamente. Questi materiali possono essere separati dai pannelli e sottoposti a processi di riciclaggio appropriati. Tuttavia il riciclo dei pannelli di legno laminato può richiedere un processo di smontaggio e separazione dei componenti, che potrebbe essere complesso e richiedere attrezzature specializzate. Inoltre, la disponibilità di impianti di riciclaggio specifici può variare a seconda delle regioni e delle infrastrutture locali. Produzione mondiale di pannelli in legno laminato Attualmente, diverse nazioni producono pannelli in legno laminato, e la produzione può variare nel corso del tempo. La Cina è uno dei principali produttori di pannelli in legno laminato a livello mondiale. Il paese ha una vasta industria del legno e dispone di impianti di produzione ben sviluppati per la produzione di pannelli laminati. Gli Stati Uniti sono una delle principali nazioni produttrici di pannelli in legno laminato. La produzione è concentrata in diverse regioni, tra cui la West Coast e il Sud-est degli Stati Uniti. La Germania è nota per la sua industria del legno altamente sviluppata e ha una significativa produzione di pannelli in legno laminato. Il paese ha una lunga tradizione nella produzione di materiali da costruzione a base di legno. Il Giappone è un altro importante produttore di pannelli in legno laminato. L'industria del legno giapponese è rinomata per la sua attenzione ai dettagli e alla qualità. Il Canada ha una vasta industria forestale e una produzione significativa di pannelli in legno laminato. Il paese è ricco di risorse forestali e ha una lunga tradizione nel settore del legno.

SCOPRI DI PIU'
https://www.arezio.it/ - Piastrelle Smaltate fatte a Mano con Componenti Riciclati
Marco Arezio - Consulente materie plastiche Piastrelle Smaltate fatte a Mano con Componenti Riciclati
Economia circolare

La lunga tradizione Italiana delle piastrelle fatte a mano sposa la sostenibilità. Come si producono oggi.  Le piastrelle smaltate fatte a mano hanno una lunga storia che risale a molti secoli fa, infatti le prime tracce risalgono all'antica Mesopotamia e all'antico Egitto intorno al 4.000 a.C. In queste civiltà, le piastrelle venivano realizzate utilizzando argilla e smalti a base di minerali come l'ossido di ferro per creare decorazioni su pareti e pavimenti. Durante il periodo islamico, tra l'VIII e il XV secolo, le piastrelle smaltate fatte a mano raggiunsero un grande sviluppo artistico e tecnico. In particolare, l'arte della ceramica islamica in Persia, Spagna e Medio Oriente produsse piastrelle smaltate di straordinaria bellezza e complessità. In Italia, il massimo splendore di quest’arte lo raggiunse nel periodo del rinascimento, a partire dal XV secolo, dove le città di Firenze, Faenza, Deruta e altre località italiane, divennero famose per le loro produzioni di piastrelle smaltate a mano, spesso decorate con disegni ispirati alla pittura rinascimentale. La maiolica italiana e la Delftware olandese divennero, inoltre, stili distintivi di piastrelle smaltate fatte a mano, con motivi decorativi e paesaggi dipinti a mano. Nel tardo XIX secolo e all'inizio del XX secolo, i movimenti artistici dell'Art Nouveau e dell'Art Deco influenzarono la produzione di piastrelle smaltate fatte a mano, diventando più audaci nel design, con motivi geometrici, forme organiche e colori vivaci. Questa tipologia di articoli artigianali sono diventi oggetti d'arte molto apprezzati per la loro bellezza, artigianalità e individualità. Sono utilizzati per decorare pareti, pavimenti, caminetti, bagni e cucine, e sono considerati delle vere e proprie opere d'arte ceramica. Oggi, oltre all’espressione artistica che rappresenta la piastrella, si guarda anche alla loro sostenibilità, infatti, molti artigiani ceramisti utilizzano nelle loro ricette, scarti di lavorazioni precedenti o piastrelle di recupero che provengono da demolizioni e ristrutturazioni. Le fasi di produzione di una piastrella smaltata fatta a mano con elementi riciclati comportano le seguenti fasi: - Raccolta e selezione dei materiali riciclati: vengono raccolti i materiali ceramici riciclati, come piastrelle rotte o scarti di produzione, provenienti da fonti affidabili. Questi materiali vengono successivamente selezionati e separati per rimuovere eventuali impurità come colla o vernice - Triturazione: i materiali ceramici riciclati vengono sottoposti a un processo di triturazione meccanica per ridurli in frammenti più piccoli. La dimensione dei frammenti può variare a seconda dell'applicazione e del tipo di piastrella che si intende produrre. - Preparazione dell'impasto: l'impasto viene preparato utilizzando una miscela di argilla vergine e materiali ceramici riciclati triturati. La proporzione tra argilla e materiali riciclati può essere determinata in base alle caratteristiche desiderate delle piastrelle finali. L'argilla funge da legante per i materiali riciclati. - Miscelazione e omogeneizzazione: gli ingredienti vengono miscelati insieme in un miscelatore meccanico per garantire una distribuzione uniforme dei materiali e ottenere una consistenza omogenea dell'impasto. Durante questa fase, possono essere aggiunti additivi o coloranti, se necessario, per ottenere il risultato desiderato. - Formatura delle piastrelle: l'impasto viene quindi formato in piastrelle attraverso l’azione manuale dell’artigiano piastrellista, facendo attenzione alla planarità, all’omogeneità e alla buona riuscita delle superfici. - Essiccazione: le piastrelle formate vengono trasferite su scaffali o appositi supporti e lasciate asciugare all'aria o in forni appositi. Questo processo di essiccazione rimuove l'umidità e rende le piastrelle pronte per la successiva fase di cottura. - Cottura: le piastrelle essiccate vengono sottoposte a una cottura in forni ceramici ad alta temperatura. La temperatura e il tempo di cottura dipendono dal tipo di argilla utilizzata e dalle specifiche del produttore. Durante la cottura, l'argilla si solidifica e le particelle di materiale ceramico riciclato si fondono insieme per formare le piastrelle. - Smaltatura e decorazione: dopo la cottura, le piastrelle possono essere smaltate e decorate. Questa fase comporta l'applicazione di smalti, colori o decorazioni sulla superficie delle piastrelle. Lo smalto è una miscela di minerali colorati e vetrificanti che conferisce alle piastrelle la loro finitura e colore caratteristici. Per preparare lo smalto, i minerali vengono macinati finemente e mescolati con vetrificanti e altri additivi. Questo processo può essere effettuato in modo manuale o utilizzando apparecchiature specializzate. La smaltatura può avvenire a spruzzo, per immersione o a pennello.    Smaltatura a spruzzo: lo smalto viene spruzzato sulla superficie delle piastrelle utilizzando un'apparecchiatura di spruzzatura. Questo metodo permette una distribuzione uniforme dello smalto ed è adatto per superfici lisce.      Smaltatura a immersione: le piastrelle vengono immerse in una vasca contenente lo smalto liquido. Dopo l'immersione, le piastrelle vengono sollevate e l'eccesso di smalto viene scolato. Questo  metodo è adatto per coprire l'intera superficie delle piastrelle.    Applicazione a pennello: lo smalto viene applicato sulla superficie delle piastrelle utilizzando un pennello. Questo metodo offre maggiore controllo sulla quantità e sulla distribuzione dello smalto, ed è spesso utilizzato per dettagli o decorazioni specifiche.- Asciugatura: dopo l'applicazione dello smalto, le piastrelle vengono lasciate asciugare per un periodo di tempo. La durata dell'asciugatura dipende dal tipo di smalto utilizzato e dalle condizioni ambientali. Durante l'asciugatura, lo smalto si indurisce e forma uno strato solido sulla superficie delle piastrelle. - Seconda cottura: dopo l'asciugatura, le piastrelle vengono sottoposte a una seconda cottura a una temperatura elevata. Durante questa cottura, lo smalto si fonde e si vetrifica, formando uno strato protettivo sulla superficie delle piastrelle. Questa cottura è essenziale per fissare lo smalto e garantire una finitura durevole e resistente. Traduzione automatica. Ci scusiamo per eventuali inesattezze. Articolo originale in Italiano.

SCOPRI DI PIU'
https://www.arezio.it/ - I Brand della Moda Vogliono i Tessuti Riciclati. Ma dove sono?
Marco Arezio - Consulente materie plastiche I Brand della Moda Vogliono i Tessuti Riciclati. Ma dove sono?
Economia circolare

Il settore del riciclo dei cascami tessili non riesce a fornire ai produttori di capi di abbigliamento sostenibili le quantità richiesteSembra un controsenso, ma la realtà è che le case di produzione di indumenti ed accessori per la moda stanno virando il timone, fortemente, verso le materie prime di riciclo e chiedono sempre più rifiuti tessili da riciclare. Per andare incontro alle richieste dei clienti, che vogliono acquistare indumenti ed accessori di moda che possano rispecchiare la loro voglia di ecosostenibilità, si sono studiate linee senza compromessi, con percentuali di materiali riciclati dichiarati e verificabili.Ma il mercato del riciclo è pronto a questa transizione? La risposta potrebbe essere in un dato, abbastanza sconfortante, che indica il tasso di riciclo dei cascami tessili, nel mondo, intorno al 3%, valore molto più basso della vituperata plastica o del vetro o della carta o dei metalli. Questo significa che, nonostante l’industria tessile sia tra quelle con il maggior impatto ambientale, vengono prodotti ogni anno milioni di vestiti che finiscono in discarica o, peggio, bruciati, ad un ritmo medio di un autotreno ogni secondo. In questa percentuale media di riciclo, troviamo i paesi occidentali sopra il tre percento e i paesi del sud est asiatico, dove sono concentrate molte produzioni, sotto questa soglia, con un picco negativo in India che racimola appena l’1,5%. Un grave problema, anche dal punto industriale e dell’immagine delle aziende che vivono di moda, in quanto le richieste dei clienti sono chiare ma la loro soddisfazione resta complicata.Cosa si può fare per incrementare il sistema riciclo? La filiera del riciclo dei cascami tessili è abbastanza arretrata rispetto a quelle sopra citate, come la plastica, il vetro, la carta o i metalli, ed è necessario spingere per recuperare il gap.Tra le principali e più urgenti azioni da compiere possiamo suggerire: - Incrementare la raccolta post consumo dei tessuti usati come avviene per gli altri prodotti da riciclo- Migliorare la raccolta differenziata evitando di inserire i capi vecchi nel sacco del rifiuto indifferenziato che andrà bruciato - A fronte di una domanda in crescita, industrializzare e incrementare i punti di raccolta dei cascami tessili meccanizzando la loro separazione - Incrementare la ricerca chimica e meccanica, in modo da rendere sempre più disponibile ed ampia la gamma di tessuti recuperati - Fare sistema, quindi responsabilizzare chi deve emettere normative sul riciclo dei cascami tessili, migliorare la comunicazione con i cittadini, rendere accattivante e profittevole il settore della raccolta, smistamento e riciclo dei tessuti. Secondo il report di “Circular Fashion Index 2023” di Kearney, che ha preso in considerazione circa 200 imprese del settore prevalentemente della moda e del lusso, vi sono aziende più virtuose di altre, in termini di riciclo dei cascami tessili, comunicazione sulla circolarità relativa al brand, la qualità per la manutenzione del prodotto e la possibilità di offrire una riparazione del capo con lo scopo di allungargli la vita. Inoltre si sono considerati alcuni servizi post vendita come l’offerta di capi usati, il servizio di noleggio e la raccolta del cascame tessile a fine vita del capo. La classifica stilata della Top Ten delle aziende più sostenibili è la seguente: 1. Patagonia 2. Levi’s 3. The North Face 4. OVS 5. Gucci 6. Madewell 7. Coach 8. Esprit 9. LululemonAthletica 10. Lindex

SCOPRI DI PIU'
https://www.arezio.it/ - Quali Saranno le Previsioni di Crescita della Bioeconomia al 2030?
Marco Arezio - Consulente materie plastiche Quali Saranno le Previsioni di Crescita della Bioeconomia al 2030?
Economia circolare

La filiera sostenibile è in crescita ma necessita di supporto e continuitàQuando si parla di performances economiche di un settore, si pensa spesso alle industrie del comparto digitale o farmaceutico o legato alla tecnologia robotica o al settore energetico o a quelle aree di novità tecniche che rivoluzioneranno la nostra vita, come l’intelligenza artificiale. In realtà esistono altri settori, meno conosciuti, che rientrano ultimamente tra quelli di grande interesse strategico per le nazioni e che rispecchieranno trends di crescita molto importanti. Parliamo della bioeconomia, che in Europa conta già un fatturato di circa 2000 miliardi di euro l’anno, occupando più di 22 milioni di addetti in settori come l’agricoltura, la silvicoltura, la pesca, la lavorazione delle biomasse alimentari e quelle industriali. Per biomasse industriali, per esempio, parliamo della produzione di pasta di cellulosa per il mondo della carta, biocomposti chimici, biomateriali e biocombustibili. Un capitolo particolarmente interessante riguarda proprio questa ultima categoria che, rientrando nel campo della bioindustria, è diventata uno dei pilastri primari della bioeconomia Europea, in grado di convertire le biomasse, residuali o coltivate, in un’ampia gamma di prodotti sostenibili che possono sostituire quelli convenzionali. Gli studi indicano le seguenti previsioni di crescita del settore per il 2030: - Il 30% dei composti chimici avrà un’origine bio e riguarderanno la chimica fine e i prodotti di elevato valore aggiunto- Il 25% dell’energia dei trasporti sarà originata dalla biomassa, con particolare incremento dei carburanti sostenibili per il trasporto aereo - Il 30% dell’energia elettrica e termica in Europa deriverà dalla biomassa Inoltre, possiamo citare un mercato in forte espansione per quanto riguarda il settore dei biopolimeri, delle bioplastiche, delle fibre di origine biologica, dei biocompositi e derivati dalla nano-cellulosa. Si genereranno nuovi composti chimici, su base biologica, per il settore della cosmesi, farmaceutico, aereonavale, bioedilizia, dell’agricoltura e del settore automobilistico. Esiste inoltre un fiorente mercato delle macchine per la lavorazione e trasformazione delle biomasse in bioenergia e bioprodotti, che hanno un grande futuro di sviluppo e di occupazione. Ovviamente, un mercato giovane e potenzialmente in crescita si scontrerà con lo spirito conservatore del mercato degli idrocarburi, che cercherà di mantenere le posizioni commerciali incidendo sui prezzi al ribasso. Nella filiera della bioeconomia e della bioindustria il ruolo dei finanziamenti al sistema, attraverso gli incentivi per sostenere la competitività del settore, permettere di industrializzare e rendere sostenibile a livello imprenditoriale il mercato, sarà del tutto strategico. Le bioraffinerie diventeranno competitive quando: - Si potrà creare dei centri di trasformazione che lavorino multiprodotti e che il rifiuto sia di derivazione locale - Si creerà una filiera della raccolta dei rifiuti, in modo da rendere disponibili masse sufficienti per la lavorazione industriale in modo continuativo - I prezzi della cessione dei rifiuti dovranno essere competitivi per poter sostenere la filiera, ma nello stesso tempo essere sostenibili per gli agricoltori - Non creare la competizione nelle aree di coltivazione pregiate adatte alla produzione di cibo con quelle per la biomassa - Il ripristino dei terreni a bassa produttività per l’utilizzo di colture che possano sostenere l’industria della biomassa e, allo stesso tempo, migliorino il bilanciamento della CO2 e l’incremento della biodiversità

SCOPRI DI PIU'
https://www.arezio.it/ - Trattamento delle Biomasse Legnose per la Produzione di Energia
Marco Arezio - Consulente materie plastiche Trattamento delle Biomasse Legnose per la Produzione di Energia
Economia circolare

Il legno di scarto o di selezione forestale deve essere trattato per realizzare un buon apporto energetico. Vediamo comeLa superficie forestale Italiana complessiva negli ultimi 80 anni è triplicata e, se consideriamo ambiti temporali più ristretti, per esempio, dal 2005 al 2015, prossimo dire che l’aumento è stato di 53 mila ettari all’anno, a discapito dei pascoli, dei terreni incolti in aree montane e dei terrazzamenti collinari. Se da un lato l’aumento della superficie boschiva può essere visto come un fatto positivo, dall’altro la disposizione in aree montane delle maggior parte delle risorse forestali, unito al progressivo spopolamento delle stesse aree, comporta un problema di gestione e di manutenzione dei boschi. Il taglio selettivo e la pulizia dei residui legnosi nelle aree forestali rimane un’attività importante e necessaria per la vita delle piante e per il riutilizzo degli scarti, che possono essere impiegati in molti settori, come quello del mobile, di cui l’Italia è un attore principale. Inoltre, la filiera delle biomasse legnose destinate alla produzione di energia calorifica, imporrebbe una migliore gestione delle foreste nazionali, potendo ridurre le importazioni di legname destinato a questi scopi dall’estero. Per quanto riguarda la produzione di elementi adatti alla combustione, possiamo approfondire quali processi siano necessari per trasformare uno scarto legnoso in un elemento idoneo a sviluppare energia termica. In questo racconto ci aiuta Davide Pettenella, che ha studiato la filiera forestale Italiana, con lo scopo di analizzare la produzione delle biomasse legnose per la produzione di energia termica. Per liberare e utilizzare l’energia contenuta nei materiali vegetali sono disponibili diverse tecnologie di conversione: alcune di queste costituiscono applicazioni ormai affidabili, economiche, comode e semplici nell’impiego, suscettibili di essere acquisite a livello sia individuale sia collettivo e industriale.Altre, invece, sono ancora in fase di sviluppo, richiedono strutture ad elevata tecnologia e dimensioni industriali per essere economiche, anche se dallo sviluppo di queste ultime dipende un uso esteso in funzione energetica della risorsa biomassa. Nel caso delle biomasse forestali, caratterizzate, tra le altre cose, da contenuti idrici relativa-mente bassi, sono utilizzati soprattutto i processi termo-chimici di conversione energetica (“via secca”), mentre gli altri processi riguardano in modo particolare le biomasse agricole, a più alto contenuto d’umidità (“via umida”). Nella prima parte di questo capitolo saranno presentati i trattamenti necessari per accresce-re ed uniformare la qualità energetica di materiali legnosi, mentre nella seconda parte sa-ranno descritte le tecnologie di conversione vere e proprie. Tecniche di condizionamento I prodotti legnosi potenzialmente utilizzabili per scopi energetici sono caratterizzati da un’e-trema eterogeneità per composizione, misura e forma: si passa, infatti, dalla polvere di legno alla segatura, dai trucioli alle ramaglie e ai tronchi. Al momento di destinarli alla conversione energetica, essi richiedono trattamenti che sono variabili a seconda delle caratteristiche fisico-chimiche del materiale di cui si dispone e del tipo d’impianto che li utilizza. Il fine di queste operazioni è l’ottenimento di un combustibile a più alta qualità energetica e maggiore facilità d’impiego, che renda la dendro-energia il più comparabile possibile agli altri combustibili convenzionali. L’essiccazione e lo stoccaggio Successivamente alle fasi taglio, allestimento ed esbosco, la legna non può essere «convenientemente» utilizzata tal quale a causa dell’elevata percentuale d’umidità; questa può assumere valori molto vari e, mediamente, in una pianta forestale appena tagliata si aggira intorno al 50%. In queste condizioni gran parte dell’energia contenuta nel legno sarebbe utilizzata per liberare l’acqua contenuta, con ovvie considerevoli perdite dell’efficienza di conversione energetica. Una soluzione semplice ed economica per ridurre il tenore idrico del legno da bruciare l’essiccazione per traspirazione (o biologica). Essa consiste in una stagionatura del legno, la cui durata può variare da pochi mesi a più di un anno, in relazione all’andamento climatico stagionale e al tipo di legno; questo, dopo il taglio, è solitamente stoccato in foresta, ai bordi della strada o in prossimità dei luoghi d’utilizzazione, all’aperto oppure al riparo. Ovviamente la perdita d’umidità porta a un aumento del potere calorifico del legno, che raggiunge il valore più alto con contenuti d’umidità tra il 12 e il 15%. Infatti, un contenuto d’umidità del legno eccessivamente basso porterebbe, nella maggior parte degli impianti di combustione oggi disponibili, a una rapida bruciatura e i fumi evacuerebbero velocemente, prima di cedere il calore. A questi valori d’umidità corrisponde anche una migliore stabilità del materiale. In realtà il guadagno non è così macroscopico, se consideriamo che il peso del legno diminuisce durante l’essiccazione; infatti, se, come è giusto che sia, considerassimo la variazione del potere calorifico sullo stesso volume, il guadagno in termini energetici risulterebbe più contenuto. D’altra parte, occorre considerare anche che l’essiccazione del legno porta a una migliore qualità di combustione, a una minore produzione di fumo e catrame, a una minore usura delle apparecchiature e a più alti rendimenti termodinamici. La cippatura Per rendere omogenea la composizione dei materiali legnosi si ricorre alla cippatura, un’operazione meccanica che riduce assortimenti legnosi di diversa misura in scaglie di piccole dimensioni (Chips , da cui il nome). In questo modo è notevolmente agevolata la movimentazione del materiale e l’alimentazione degli impianti. La geometria dei chips varia con le tecniche di taglio, infatti le dimensioni richieste sono in funzione del tipo di impianto e, soprattutto, del suo sistema di alimentazione. Essi hanno una lunghezza che varia da 15 a 50 mm, una larghezza pari a metà e uno spessore pari a 1/5-1/10 della lunghezza (generalmente le dimensioni sono 40x20x3mm). La geometria, la dimensione, la densità sono caratteristiche importanti se i chips sono destinati all’industria del legno; l’omogeneità, invece, è il parametro più importante per i chips destinati alla combustione. La presenza di chips di dimensioni disomogenee provoca spesso fastidiosi bloccaggi dei sistemi d’alimentazione degli impianti automatici. L’omogeneità del materiale può essere ottenuta con la calibratura tramite vagli. Un tenore di umidità del legno superiore al 40% può causare problemi al funzionamento della cippatrice: dopo il taglio si richiede, pertanto, uno stazionamento del materiale sul posto ai bordi della strada o in piazzale. In ogni caso l’umidità del legno non deve scendere a valori inferiori al 25%. Lo stoccaggio dei chips pone dei problemi per l’essiccazione, poiché possono intervenire deterioramenti e perdita di materiale a causa dei processi di respirazione e di fermentazione microbiologica, tanto più intensi quanto più è profonda la pila di ammasso, l’umidità del combustibile e la temperatura esterna (gli stessi processi di respirazione e fermentazione, d’altro canto, aumentando la temperatura e favoriscono l’evaporazione dell’acqua contenuta nei chips). Sul mercato italiano esistono delle cippatrici di varia potenza fino a 15 MW, in grado di la-vorare legname di varie dimensioni (con capacità di lavoro variabili da qualche tonnellata fino a qualche decina di tonnellate l’ora), sia automotrici sia portate da trattrici agricole. Le prime sono in grado di lavorare legname di ogni tipo di specie, fino a un diametro di 30 cm. e hanno dei costi elevati di investimento e di esercizio (l’affitto costa circa 150 Euro per un’ora di funzionamento), ma hanno il vantaggio di notevoli capacità di lavoro e basso impiego di manodopera. Le cippatrici portate ai tre punti della trattrice hanno costi d’investimento contenuti e costi di esercizio relativamente bassi, ma richiedono alimentazione manuale e offrono basse capacità di lavoro. Esse si distinguono per il sistema di taglio: questo può essere a disco o a tamburo. Il primo, in genere usato nelle cippatrici portate di piccole potenze, presenta l’inconveniente di produrre delle code di cippatura che bloccano la vite senza fine dell’impianto di alimentazione delle caldaie, ma in compenso ha costi di investimento ragionevoli, semplicità d’uso, manutenzione relativamente facile, potenze richieste meno elevate. Il secondo sistema di taglio è più diffuso nelle macchine automotrici di potenza più elevata. La densificazione Ai differenti livelli industriali della filiera del legno, sono prodotte ingenti quote di residui legnosi di piccola granulometria (trucioli, segatura, polvere di legno, ecc.) che non trovano una facile utilizzazione e, talvolta, pongono problemi di smaltimento. La densificazione di questi materiali permette di ottenere un combustibile denso, in forma di cubetti, pellets (piccoli cilindri di 8-10 mm di diametro e 20-30 mm di lunghezza) e bricchette (a forma di saponetta o di cilindro con lunghezza tra 50 e 300 mm), utilizzabile all’interno del processo produttivo o vendibili ad altri utilizzatori. I prodotti densificati sono caratterizzati da elevata densità energetica, stabilità e uniformità delle dimensioni, bassa percentuale d’umidità. Essi, di conseguenza, hanno minori costi di trasporto e una maggiore facilità di immagazzinamento e uso, miglior controllo e maggiore efficienza di combustione. La densità dei prodotti densificati varia da 0,9 a 1,4 g/cm3, mentre la loro umidità può variare entro range molto estesi (generalmente dal 5% al 10%). Il processo di produzione si articola in tre fasi: stoccaggio e preparazione del materiale, essiccazione, densificazione. Inizialmente il legno è separato dalle impurità, ridotto in dimensioni più piccole e uniformi e stoccato su piattaforme; da qui è trasportato all’interno di forni di essiccazione, dove l’umidità è ridotta a valori intorno al 10%. Avviene quindi la densificazione del materiale per compressione (pressa a vite o a pistone) o estrusione. Le macchine che lavorano per estrusione riscaldano il materiale, provocando, dopo il raffreddamento, la formazione di una pellicola protettrice di lignina che si oppone ad un ritorno di umidità. La qualità del prodotto e il costo energetico richiesto (mediamente il 20% dell’energia contenuta nel materiale da densificare) dipendono dalle caratteristiche chimico-fisiche del materiale grezzo e dal tipo di processo impiegato. Altre tecniche di condizionamento Tra i prodotti di condizionamento vanno citati il legno torrefatto, (una forma energetica inter-media tra il legno e il carbone, con potere calorifico superiore a 5000 kcal/h, ottenuto per trattamento del legno a temperature di circa 300 gradi, più stabile e più omogeneo del materiale di partenza e che crea minori problemi di stoccaggio e trasporto) e la miscela segatura-combustibile. L’impiego di questi prodotti risponde, tuttavia, piuttosto a esigenze di smaltimento di residui di lavorazione che a necessità di valorizzazione energetica.

SCOPRI DI PIU'
https://www.arezio.it/ - Spunbond Sostenibile: Polipropilene Riciclato ed Energia Rinnovabile 100%
Marco Arezio - Consulente materie plastiche Spunbond Sostenibile: Polipropilene Riciclato ed Energia Rinnovabile 100%
Economia circolare

Qualità tecnica dei tessuti non tessuti, campi di applicazione, circolarità delle materie prime ed impronta carbonica ridottaLo spunbond dell’azienda di cui parliamo oggi, è un tessuto non tessuto in polipropilene riciclato che viene realizzato utilizzando, in produzione, solo energia rinnovabile. Lo Spunbond in PP è un materiale leggero ma incredibilmente resistente, appartenente al gruppo dei tessuti sintetici, oggi anche riciclati, omogeneo e sulla superficie è visibile un debole effetto geometrico. Questo tipo di tessuto non tessuto in polipropilene è impiegato in moltissimi campi applicativi, come quello dell’edilizia, dell’automotive, dei tessuti commerciali, dei mobili, dei materassi, nell’agricoltura, nell’industria, nel settore sanitario e in molti altri casi. Ma come si produce un tessuto non tessuto in polipropilene riciclato attraverso la tecnica dello spunbond? Rispetto alla filiera di produzione di un tessuto non tessuto in PP vergine attraverso la tecnica dello spunbond, volendo produrre un prodotto riciclato, si dovrà partire dalla raccolta degli scarti di produzione o di altri canali che forniscono il tessuto non tessuto in PP a fibre. Gli scarti dei tessuti non tessuti verranno macinati, in dimensioni sufficientemente piccole da permettere un lavaggio del materiale, se questo fosse necessario, e successivamente densificati per aumentare il peso del materiale riciclato che dovrà essere lavorato nell’estrusore. Se utilizzeremo esclusivamente scarti da lavorazioni industriali, sarà possibile evitare il lavaggio del materiale in quanto il suo ciclo di vita non ha avuto contaminazioni esterne. Utilizzando la tecnologia termica di estrusione, lo scarto dei tessuti non tessuti in PP viene fuso e, attraverso un processo di filatura, si realizzano le fibre di PP che daranno vita al nuovo materiale. Successivamente le fibre, disposte in maniera casuale su un trasportatore, verranno riscaldate per calandratura realizzando un unico velo continuo. Il tessuto non tessuto prodotto con la tecnica dello spunbond ha notevoli vantaggi tecnici, in quanto ha una grande resistenza a trazione longitudinale e trasversale, è permeabile all’acqua, al vapore e all’aria, resiste agli acidi, è anallergico, non irritante e adattabile ai diversi settori di applicazione. La novità che la Radici Group, produttore dello spunbond con materiali riciclati, vuole sottolineare non è solo quella di aver studiato e industrializzato un tessuto non tessuto con in polipropilene di recupero, in percentuali differenti in base alla tipologia di prodotto da realizzare, ma che questa produzione venga fatta utilizzando al 100% energia proveniente da fonti rinnovabili. L’azienda ha dimostrato che una percentuale variabile di materiale riciclato dal 50 al 70%, porta una riduzione delle emissioni di CO2 dal 30 al 40% circa, rispetto a un tessuto realizzato a partire completamente da materiali vergini, senza compromessi sulle performance tecniche che restano elevate. Inoltre Radici Group, avendo aderito allo schema ISCC PLUS (International Sustainability and Carbon Certification), può proporre non tessuti spunbond e meltbown realizzati in polipropilene bio, bio-circolare o circolare, dove il materiale sostenibile è allocato tramite bilancio di massa. Si tratta di una certificazione che fornisce tracciabilità lungo la filiera, verificando che le aziende certificate soddisfino elevati standard ambientali e sociali. Il fatto che il tessuto non tessuto venga realizzato con scarti di PP riciclato non impatta negativamente nemmeno nel segmento del colore, anzi, Radici Group può offrire un’ampia cartella colori per il cliente, inoltre è possibile realizzare colori "tailor made", per soddisfare le necessità produttive.

SCOPRI DI PIU'
https://www.arezio.it/ - Mobilità Elettrica: Poca Lungimiranza sulle Materie Prime e il Loro Riciclo
Marco Arezio - Consulente materie plastiche Mobilità Elettrica: Poca Lungimiranza sulle Materie Prime e il Loro Riciclo
Economia circolare

Abbiamo imposto un modello di mobilità a batteria senza preoccuparci troppo della filiera pre e post venditaNon c’è dubbio che fa piacere sentire che la comunità internazionale si sta muovendo per favorire la riduzione delle particelle inquinanti e dalla CO2, prodotte dai motori endotermici ogni anno. A chi non farebbe piacere la diminuzione dello smog, dei rumori e il miglioramento della salute collettiva, duramente attaccata dall’inquinamento che macchine, autotreni, corriere producono costantemente? Si, tutto bello, ma spostare un comparto come quello della mobilità, così funzionale e strategico, dai motori termici a quelli a batteria, non deve essere solo una bella operazione di facciata, ma comporterebbe anche la soluzione di alcune fondamentali problematiche, legate all’approvvigionamento delle materie prime per produrre le batterie e il riciclo di quelle esauste, anche per ricavarne materiali riciclati da reimpiegare nella produzione. La Comunità Europea ha fissato degli obbiettivi molto ambiziosi per quanto riguarda il riciclo delle materie prime critiche che si trovano all’interno delle batterie, come il litio, la grafite, il nichel e il cobalto. Questo valore è stato stabilito nel 15% di materiale riciclato che dovrà essere impiegato per produrre una batteria nuova. Tuttavia, oggi, il riciclo delle batterie in Europa è al palo, in quanto la maggior parte di quelle esauste vengono spedite in Cina e in Corea del Sud, creando una doppia dipendenza verso questi paesi. Infatti, lo siamo per le materie prime vergini e, non riciclando quelle che sono all’interno delle batterie esauste, non possiamo disporre di composti strategici già pagati alla fonte. È facile quindi intuire che nei prossimi anni la pressione del mercato verso le nuove batterie farà aumentare in modo esponenziale la richiesta e, di conseguenza, il prezzo delle stesse potrebbe salire in modo spropositato, anche perché le materie prime che le compongono subiscono un controllo strategico da parte di alcune nazioni come la Cina. La Comunità Europea si sta muovendo per imporre un tasso di riciclo dei componenti delle batterie pari al 73% entro il 2030 ma, i tempi sono stretti e le criticità da affrontare molte. All’interno delle batterie ci sono alcuni materiali più critici di altri, vediamo perché: - Il litio è un componente fondamentale ed incide sul costo attuale della batteria per circa il 30-40%, con una domanda in continua crescita la necessità di litio potrebbe triplicare entro il 2030. Di contro, il tasso di riciclo Europeo resta, ad oggi, estremamente basso. I maggiori riciclatori Europei sono i Tedeschi, come la Accurec, la Duesenfeld, Redux, i Francesi come la Snam, la Eramet, e i Finlandesi come la Akkuser, ma la massima efficienza sul riciclo del litio è raggiunta in Cina con corca il 90% della materia prima riciclabile in ingresso.- La grafite, che costituisce circa il 50% di materiale in una batteria, dovrebbe aumentare di prezzo di circa 14 volte entro il 2050, anche perché l’unione Europea, attualmente, non ha un mercato strutturato per il suo riciclo. Inoltre, la grafite che viene utilizzata per la produzione delle batterie attualmente proviene, principalmente, dalla Cina, quindi la creazione di un mercato del riciclo Europeo permetterebbe una migliore l’indipendenza sugli approvvigionamenti.

SCOPRI DI PIU'
https://www.arezio.it/ - Il Packaging del Vino Francese Vira sulle Bottiglie in rPET?
Marco Arezio - Consulente materie plastiche Il Packaging del Vino Francese Vira sulle Bottiglie in rPET?
Economia circolare

Un accordo storico tra due società per aiutare il settore vitivinicolo Francese ad affrontare la mancanza di vetroIl vino ha provato in passato ad uscire dalle solite bottiglie in vetro da 75 cc., entrando nel cartone per esempio, ma con risultati non eccelsi. Un imballo troppo diverso, anche visivamente, che non è piaciuto ai degustatori del nettare degli Dei, sollevando anche alcuni dubbi sulla qualità e durata del vino all’interno di questo packaging in cartone. Ora la Francia, famosa nazione per quantità e qualità del vino, vive la difficoltà nel reperire il vetro per le bottiglie tradizionali e, anche a causa dei costi saliti alle stelle, si è domandata come poter risolvere il problema. Così, due società specializzate nel packaging per il settore vitivinicolo e nelle soluzioni sostenibili per l’industria dell’imbottigliamento, hanno unito i loro sforzi per andare incontro alle aziende agricole Francesi che producono vino. La collaborazione tra Vinventios, azienda specializzata nella produzione di chiusure sostenibili per bottiglie, inserita nella filiera della produzione del vino in molti paesi del mondo e Packamama, azienda specializzata nella produzione di bottiglie per il vino in rPET, ha dato i suoi frutti sul mercato Francese. Le nuove bottiglie in rPET andranno a sostituire le classiche cilindriche in vetro, che tutti conosciamo, apportando, non solo una novità stilistica nella bottiglia, in quanto ovalizzata e non cilindrica, ma anche un messaggio forte dal punto di vista ambientale, utilizzando l’rPET, riciclato al 100%, che secondo Packamama, aiuterà le cantine ad abbattere la loro impronta di CO2. Inoltre, il PET riciclato per alimenti è certificato in Europa e negli USA, non reagisce ai cibi e alle bevande, non ha alcun impatto sul gusto ed è privo di PBA. Il vantaggio della bottiglia riciclata in rPET non è solo espresso nel miglioramento del marketing dell’imballo e nel vantaggio ambientale, passando dal vetro alla plastica, ma ha anche un grande vantaggio economico nei trasporti e, quindi, nel risparmio di costi e di carburante bruciato per la logistica. Infatti, secondo Packamama, la bottiglia in rPET, del tutto simile a quella in vetro, anche nel colore, pesa solo 63 gr. che corrisponde all’87% in meno di una di vetro, con risvolti evidenti sull’impronta carbonica nella logistica. Secondo Packamama la Francia sta vivendo una serie di coincidenze negative nel settore del vino, come la mancanza di bottiglie in vetro, i loro prezzi molto più altri che in passato e la disaffezione al vino da parte delle generazioni più giovani. Con la nuova bottiglia in rPET i prezzi del packaging saranno più competitivi, più stabili, il prodotto più sostenibile e più innovativo, andando incontro anche alle esigenze rivendicate dai giovani in termini di tutela ambientale. La carenza di bottiglie in vetro, che ha afflitto la Francia negli ultimi anni, è stata innescata dal fermo dei forni a causa del Covid 19, ma è poi proseguita per la ridotta produzione generale, anche a seguito del costo improponibile, per alcune aziende, dell’energia. Resiste, tuttavia, un certo disappunto da parte dei consumatori di vino meno giovani al cambio del vetro come materia prima per le bottiglie, essendo convinti che il vetro sia, nel suo complesso, più sostenibile e circolare della plastica.

SCOPRI DI PIU'
https://www.arezio.it/ - Il Riciclo dei Tappeti e della Moquette: A che punto Siamo?
Marco Arezio - Consulente materie plastiche Il Riciclo dei Tappeti e della Moquette: A che punto Siamo?
Economia circolare

Due famiglie di rifiuti ancora di difficile riciclo che continuano a riempire le discariche in tutto il mondoIl riciclo dei tappeti e delle moquette rimane un punto non risolto nell’agenda della circolarità dei prodotti, infatti, se guardiamo freddamente i numeri, rappresentati dalle tonnellate di prodotto che vengono portati in discarica rispetto a quelli che vengono riciclati o recuperati, possiamo dire che i conti non tornano. Se vogliamo parlare di tonnellate di rifiuto, secondo la Comunità Europea, in un anno vengono avviate alla discarica o all’incenerimento circa 1,6 milioni di tonnellate rappresentati da tappeti e moquette. Questo significa una quota rilevante di rifiuti che non viene minimamente riciclata per via della loro complicata composizione, fatta di polimeri, lana, carbonato di calcio e additivi chimici, che rappresentano, nell’insieme, una barriera al riciclo meccanico tradizionale. Infatti, i sistemi di riciclo dei rifiuti che rappresentano queste due famiglie di prodotti sono:- chimico, come illustrato nell’articolo “La Moquette si può riciclare grazie alla tecnologia molecolare”, - la produzione di energia tramite l’incenerimento, quindi l’utilizzo dei rifiuti infiammabili come propellente - il riusoSe il riciclo chimico non ha ancora raggiunto una diffusione importante, anche a causa dei costi per la produzione di nuovi polimeri, attraverso la scomposizione degli elementi costituenti i tappeti e le moquettes, la scelta dell’uso di questi rifiuti per produrre energia termica da impiegare, per esempio, nei forni delle cementerie, sembra una scelta apparentemente obbligata, visto che il riciclo meccanico non è in grado di fare la sua parte. Ma. in realtà, in alcuni paesi come l’Inghilterra, si è sviluppata da alcuni anni una terza strada che permette il riciclo di questi scarti complicati, attraverso il loro riuso sotto forma di prodotti nuovi in modo che non finiscano più in discarica o all’incenerimento. La moquette e i tappeti avviati al riuso vengono puliti, separati e ridotti in piastrelle di diverse dimensioni adatte al loro riutilizzo come pavimentazioni, feltri o accoppiati ad altri materiali fono-isolanti. In Inghilterra è nata l’associazione Carpet Recycling UK (CRUK), di cui fanno parte alcuni produttori di moquette e di tappeti, alcuni riciclatori ed esperti del riciclo, con lo scopo di migliorare la circolarità della filiera. Ma anche negli Stati Uniti qualche cosa si sta muovendo, infatti, lo stato della California ha implementato una legge sulla responsabilità del produttore di tappeti e, a partire dal 2026, lo stato di New York richiede ai produttori di istituire un programma per la raccolta e il riciclaggio dei tappeti scartati e inutilizzati. In termini quantitativi stiamo parlando di numeri ancora contenuti, considerando che nel settore tessile i rifiuti che vengono generati ogni anno hanno un tasso di riciclo molto basso, intorno al 13%, e di questi il loro riutilizzo, per ora, vede un riuso di bassa qualità, come stracci, imbottiture o isolanti. Inoltre la circolarità espressa dal sistema tessile vede un ampio uso di polimeri riciclati che non derivano dalla propria filiera, come per esempio il poliestere che deriva dal riciclo delle bottiglie dell’acqua e delle bibite, bottiglie che sono sempre più necessarie per la produzione del packaging riciclato. Questa abitudine di dichiarare circolare un prodotto tessile per via della sua produzione con materiali riciclati, anche se non provengono dal settore tessile, è un elemento fuorviante e che non aiuta alla circolarità della filiera.

SCOPRI DI PIU'
136 risultati
1 2 3 4 5 6 7 8

CHIEDI INFORMAZIONI SULLA PUBBLICITÀ

Copyright © 2024 - Privacy Policy - Cookie Policy | Tailor made by plastica riciclata da post consumoeWeb

plastica riciclata da post consumo