LA PLASTICA NON RICICLABILE NEI FORNI DELLE CEMENTERIE: SIAMO SICURI?

Mercoledì, 22 aprile 2020 | Ambiente
Marco Arezio - Consulente materie plastiche - La plastica non riciclabile nei forni delle cementerie: siamo sicuri?

Se i Termovalorizzatori nascono per utilizzare correttamente l’End of Waste, le cementerie lasciano molti dubbi.

Nell’ottica dell’economia circolare, lo scarto dei prodotti del riciclo plastico, che per sua composizione chimica non può essere utilizzato, ha una valenza termica come combustibile. Ma se l’End of Waste non può essere riciclato è perché è composto da un mix di scarti plastici che, se bruciati nei forni, determinano l’emissione di sostanze tossiche che non devono essere immesse in atmosfera. Per questo sono nati i termovalorizzatori.

Gli impianti di termovalorizzazione sono progettati, costruiti e destinati alla combustione dell’End of Waste, tenendo in considerazione il processo chimico di trasformazione delle varie plastiche sotto l’effetto del calore. 

Questo processo comporta la produzione di fumi nei quali sono contenute sostanze pericolose per l’uomo e l’ambiente che, un impianto nato per questo lavoro, gestisce in modo corretto, con l’obbiettivo di abbattere le sostanze dannose.

E’ una pratica comune però, destinare una parte dell’End of Waste anche agli impianti di produzione del cemento, che lo utilizza come comburente per i propri forni a prezzi contenuti, ma attraverso impianti che non sono stati progettati specificatamente per lo smaltimento dei rifiuti.

Ma cos’è l’End of Waste?

Nelle corrette politiche di gestione dei rifiuti urbani ci sono due categorie di scarti che vengono raccolti e trattati in modo diverso e con scopi diversi:

  • I rifiuti organici, che produciamo quotidianamente nell’ambito domestico, che vengono conferiti nei centri di raccolta dei rifiuti differenziati. Questi prodotti vengono trattati per la produzione di biogas, fertilizzante, anidride carbonica per uso anche alimentare ed energia elettrica.
  • I rifiuti urbani, sotto forma di plastiche miste, che vengono selezionati per tipologia di plastica e avviati al riciclo trasformandoli in scaglie, densificati e polimeri.

Nell’ambito della selezione delle frazioni di plastica emergono alcune famiglie, le cui caratteristiche non si prestano ad una selezione meccanica come, per esempio, i poli accoppiati, plastiche formate da famiglie di polimeri differenti tra loro ed incompatibili.

Quando una plastica, alla fine del suo ciclo non è recuperabile in modo meccanico, può assumere una importante valenza termica creando un materiale comburente, di caratteristiche caloriche decisamente apprezzabili, che aiuta, attraverso il suo utilizzo, a continuare il cammino dell’economia circolare. 

Infatti, oltre a non mandare in discarica questa frazione di plastiche miste, che in termini di volume annuo è decisamente importante, possiamo risparmiare l’utilizzo di risorse naturali derivanti dal petrolio.

Con l’End of Waste si alimentano oggi principalmente centrali elettriche e cementifici. L’utilizzo di questo rifiuto nelle centrali elettriche ha ridotto la dipendenza anche verso il carbone, carburante fossile con un tenore di inquinamento molto elevato e responsabile di problemi legati alla salute dei cittadini che vivono nelle vicinanze delle centrali.

La produzione di energia elettrica, attraverso l’End of Waste, ha permesso di calibrare la progettazione degli impianti rispetto al prodotto che serve come combustibile, creando un’alta efficienza ecologica rispetto ad altri sistemi.

Nel nord Europa la produzione di energia attraverso la combustione di rifiuti plastici non riciclabili, risulta un buon compromesso tra risultato tecnico e ambientale.

Il secondo ambito di utilizzo del carburante derivato dall’ End of Waste riguarda l’uso nelle cementerie, che lo impiegano per alimentare i forni per la produzione di clinker.

Secondo uno studio fatto Agostino di Ciaula, gli impianti per la produzione di clinker/cemento non sarebbero adeguati, dal punto sanitario, ad impiegare questo tipo di rifiuto plastico.

In base a queste ricerche, l’impiego dell’End of Waste nei cementifici, in sostituzione di percentuali variabili di combustibili fossili, causa la produzione e l’emissione di metalli pesanti, tossici per l’ambiente e dannosi per la salute umana.

Queste sostanze quando emesse nell’ambiente, sono in grado di determinare un aumento del rischio sanitario per i residenti a causa della loro non biodegradabilità (persistenza nell’ambiente), della capacità di trasferirsi con la catena alimentare e di accumularsi progressivamente in tessuti biologici (vegetali, animali, umani).

È stato dimostrato che, per alcuni metalli pesanti (soprattutto quelli dotati di maggiore volatilità), il fattore di trasferimento di queste sostanze dal combustibile derivato da rifiuti alle emissioni dell’impianto, è di gran lunga maggiore nel caso dei cementifici, quando confrontati con gli inceneritori classici.

Questo valore è significativamente superiore a quello rilevabile in seguito all’utilizzo di End of Waste in impianti progettati per questo scopo (Termovalorizzatori) e, negli stessi cementifici, in misura maggiore rispetto al solo utilizzo di combustibili fossili.

Questo impiego è in grado di incrementare le emissioni nell’ambiente di diossine, PCB e altri composti tossici clorurati persistenti con conseguenze negative sulla salute umana.

Fattori di trasferimento considerevolmente maggiori per i cementifici sono anche evidenti nel caso del cadmio, sostanza riconosciuta come cancerogeno certo (emissioni percentuali 3.7 volte maggiori nel caso dei cementifici) e del piombo (fattore di trasferimento percentuale 203 volte maggiore nel caso dei cementifici).

Nonostante le misure tecnologiche di limitazione delle emissioni adottate dai cementifici, considerato l’elevato volume di fumi emessi da tali impianti, la quantità totale di Hg che raggiungerà l’ambiente sarà, comunque, tale da incrementare in maniera significativa il rischio sanitario dei residenti nei territori limitrofi.

Limitando l’analisi al solo mercurio, è stato calcolato che ogni anno in Europa nascono oltre due milioni di bambini con livelli di mercurio oltre il limite considerato “di sicurezza” dall’OMS.

Pur tralasciando l’incremento del rischio sanitario da emissione di metalli pesanti cancerogeni presenti nell’End of Waste (arsenico, cadmio, cromo, nichel), problemi altrettanto rilevanti derivano dalla presenza, concessa nel rifiuto stesso, di quantità rilevanti di piombo.

Il fattore di trasferimento del piombo, dall’End of Waste alle emissioni, è circa 203 volte maggiore nei cementifici, rispetto agli inceneritori tradizionali, e i valori emissivi sono resi, nel caso dei cementifici, ancora più problematici da un volume medio di fumi emessi, circa cinque volte maggiore nei cementifici rispetto agli inceneritori classici.

Anche per il piombo, come per gli altri metalli pesanti, il rispetto dei limiti di legge non è in grado di tutelare adeguatamente l’età pediatrica.

L’esposizione a piombo, infatti, come quella da mercurio, inizia durante la vita fetale (in utero) e comporta un accumulo progressivo e irreversibile nell’organismo.

Per limitarsi all’assunzione di piombo attraverso l’acqua potabile, secondo l’Organizzazione Mondiale della Sanità, l’assunzione di acqua con concentrazioni di piombo pari a soli 5 μg/L comporta un apporto totale di piombo che varia da 3.8 μg/giorno in età pediatrica a 10 μg/giorno per un adulto.

Un altro problema riscontrato sono le emissioni di diossina, che anche se contenute all’1% è pur sempre una quantità da considerarsi ad alto rischio per la formazione e la conseguente emissione in atmosfera di diossine, (delle quali il cloro è precursore) e altri composti tossici clorurati, da parte dei cementifici che impieghino la co-combustione dell’End of Waste in sostituzione dei combustibili fossili.

Le alte temperature presenti in alcuni punti del ciclo produttivo di questi impianti favoriscono la disgregazione delle diossine.

Tuttavia, evidenze scientifiche mostrano con chiarezza come, sebbene le molecole di diossina abbiano un punto di rottura del loro legame a temperature superiori a 850°C, durante le fasi di raffreddamento, (nella parte finale del ciclo produttivo la temperatura scende sino a circa 300°C) esse si riaggregano e si riformano, comparendo di conseguenza nelle emissioni.

Rapporti SINTEF e pubblicazioni scientifiche internazionali, documentano la produzione di diossine e di naftaleni policlorurati da parte di cementifici con pratiche di co-combustione e, un recente studio, ha dimostrato quantità considerevoli di diossine nella polvere domestica di case localizzate nei territori limitrofi a cementifici con co-combustione di rifiuti.

La Convenzione di Stoccolma richiede la messa in atto di tutte le misure possibili utili a ridurre o eliminare il rilascio nell’ambiente di composti organici clorurati (POPs) e, i cementifici con co-combustione, di rifiuti sono esplicitamente menzionati in essa.

Inoltre, anche quando le emissioni di diossine siano quantitativamente contenute, l’utilizzo di combustibile derivato da rifiuti plastici, può generare la produzione e l’emissione di ingenti quantità di PCB (concentrazioni migliaia di volte superiori), composti simili alle diossine in termini di pericolosità ambientale e sanitaria.

Le diossine sono composti non biodegradabili, persistenti nell’ambiente con una lunga emivita (che per alcuni congeneri arriva a superare il secolo), trasmissibili con la catena alimentare e, soprattutto, bio-accumulabili. 

La Environmental Protection Agency (USA EPA) ha recentemente ricalcolato il livello giornaliero di esposizione a diossine considerato non a rischio per l’organismo umano, che è pari a 0.7pg (0.0007ng) di diossine per Kg di peso corporeo.

CONDIVIDI
Copyright © 2020 - Privacy Policy - Cookie Policy | Tailor made by eWeb