LA STORIA DEI POLIMERI ATTRAVERSO LO SVILUPPO DELLA CHIMICA INDUSTRIALE

Informazioni Tecniche
rMIX: Il Portale del Riciclo nell'Economia Circolare - La Storia dei Polimeri Attraverso lo Sviluppo della Chimica Industriale
Sommario

- Come e quando sono nati i primi polimeri plastici

- Chi furono i precursori 

- Cronologia storica della nascita dei principali polimeri plastici

I polimeri sembrano materiali recenti ma la loro origine è più lontana di quanto non sembri

di Marco Arezio

La storia della nascita dei polimeri è molto meno lineare di quanto si possa pensare, con le intuizioni di alcuni precursori che, a volte, rimanevano ferme in laboratorio per decenni, in quanto la conoscenza delle reazioni chimiche o il limitato progresso tecnologico impiantistico ne inficiavano lo sviluppo.

E’ interessante notare che, per alcune combinazioni chimiche che hanno poi portato alla nascita di una determinata famiglia di polimeri, la casualità poteva aver giocato anche un ruolo primario, creando situazioni inaspettate, frutto di reazioni chimiche non cercate ma subito capite e sfruttate.

Sicuramente il secolo scorso è stato fondamentale per lo sviluppo dei polimeri di base, in quanto si sono verificate due situazioni formidabili:

- la prima era la progressione continua della conoscenza della chimica industriale, i cui albori si possono indentificare nel XIX° secolo,

- la seconda è il grande progresso industriale che ha potuto mettere a disposizione dei chimici, sia in laboratorio che nelle sedi industriali, efficienti ed innovative macchine che assecondassero le idee degli scienziati.

Come ci racconta, Michele Seppe, già negli anni 30 del secolo scorso, la moderna industria della gomma aveva già quasi cento anni, la celluloide era disponibile in commercio da oltre mezzo secolo e i fenoli erano una forza dominante in un'ampia varietà di industrie.

Con poche eccezioni, tutti gli sviluppi significativi nella tecnologia dei polimeri fino a quel momento sono stati i sistemi dei reticolati, noti anche come materiali termoindurenti.

Oggi l'industria ha un aspetto molto diverso, i termoplastici sono i materiali dominanti e, all'interno di questo gruppo, il polipropilene, il polietilene, il polistirene e il PVC sono le quattro materie prime che rappresentano la maggior parte del volume consumato a livello mondiale.

Ma i materiali termoplastici che possono davvero competere con le prestazioni, alle temperature elevate dei metalli e dei polimeri reticolati, sono materiali come le poliammidi (nylon), i policarbonati e il PEEK.

Tracciare lo sviluppo storico dei termoplastici può essere impegnativo, perché molte volte la scoperta di un materiale in laboratorio non ha avuto un percorso rapido verso la sua commercializzazione.

Il polistirene fu scoperto per la prima volta nel 1839, ma fu prodotto commercialmente solo nel 1931, a causa di problemi con il controllo della reazione esotermica di polimerizzazione.

Il PVC è stato scoperto nel 1872, ma i tentativi di utilizzarlo commercialmente all'inizio del XX° secolo sono stati ostacolati dalla limitata stabilità termica del materiale.

Infatti, la temperatura richiesta per convertire il materiale in una massa fusa, era superiore alla temperatura alla quale il polimero iniziava a decomporsi termicamente.

Questo fu risolto nel 1926 da Waldo Semon, presso BF Goodrich, infatti, mentre cercava di deidroalogenare il PVC in un solvente per creare una sostanza che legasse la gomma al metallo, scoprì che il solvente aveva plastificato il PVC. Ciò abbassò la sua temperatura di rammollimento e aprì una finestra per la lavorazione alla fusione.

Il polietilene fu creato per la prima volta in laboratorio nel 1898 dal chimico tedesco Hans von Pechmann scomponendo il diazometano, una sostanza che aveva scoperto quattro anni prima.

Ma il diazometano è un gas tossico con proprietà esplosive, quindi, non sarebbe mai stata un'opzione commerciale praticabile per la produzione su larga scala di un polimero, che ora è utilizzato in volumi annuali incredibilmente alti.

Il materiale fu riscoperto nel 1933 da Eric Fawcett e Reginald Gibson mentre lavoravano all'ICI in Inghilterra. Sperimentarono il posizionamento di vari gas ad alta pressione, e quando misero una miscela di gas etilene e benzaldeide sotto un'enorme pressione, produssero una sostanza bianca e cerosa che oggi conosciamo come polietilene a bassa densità.

La reazione fu inizialmente difficile da riprodurre, solo due anni dopo un altro chimico dell'ICI, Michael Perrin, sviluppò controlli che resero la reazione abbastanza affidabile da portare alla commercializzazione nel 1939, più di quarant'anni dopo che il polimero fu prodotto per la prima volta.

Il polietilene ad alta densità è stato sintetizzato con l'introduzione di nuovi catalizzatori nei primi anni 1950. Nel 1951, mentre J. Paul Hogan e Robert Banks lavoravano alla Phillips Petroleum, svilupparono un sistema basato sull'ossido di cromo.

I brevetti furono depositati nel 1953 e il processo fu commercializzato nel 1957, ed ancora oggi il sistema è noto come catalizzatore Phillips.

Nel 1953, Karl Ziegler introdusse un sistema che utilizzava alogenuri di titanio combinati con composti di organoalluminio e, più o meno nello stesso periodo, un chimico italiano, Giulio Natta, apportò modifiche alla chimica di Ziegler.

Entrambi i sistemi hanno consentito una riduzione sia della temperatura che della pressione necessarie per produrre l'LDPE altamente ramificato e hanno prodotto un polimero lineare molto più forte, più rigido e più resistente al calore rispetto all'LDPE.

Questi sviluppi illustrano come di diversi gruppi di chimici, che lavorarono in modo indipendente sugli stessi problemi, arrivarono a sviluppare soluzioni quasi contemporaneamente.

I nuovi catalizzatori hanno anche permesso di produrre versioni commercialmente utili del quarto membro della famiglia dei polimeri di base, il polipropilene.

Questo era stato prodotto da Fawcett e Gibson a metà degli anni 1930. Dopo i loro esperimenti di successo con il polietilene, hanno naturalmente ampliato il loro lavoro per includere altri gas, ma i loro risultati con il polipropilene furono deludenti.

Invece di produrre un materiale che fosse solido a temperatura ambiente e mostrasse utili proprietà meccaniche, la reazione produsse una massa appiccicosa interessante solo come adesivo. Fawcett e Gibson avevano prodotto quello che in seguito sarebbe stato conosciuto come polipropilene atattico.

A differenza del polietilene, in cui tutti i gruppi attaccati allo scheletro di carbonio sono atomi di idrogeno, ciascuna unità di propilene nello scheletro di polipropilene contiene tre atomi di idrogeno e un gruppo metilico molto più grande.

Nel polipropilene atattico, il gruppo metilico può apparire in una qualsiasi delle quattro possibili posizioni all'interno dell'unità di ripetizione, impedendo la cristallizzazione del materiale. I nuovi catalizzatori crearono una struttura in cui il gruppo metilico si trovava nella stessa posizione in ogni unità ripetuta.

La regolarità strutturale ha portato a un materiale in grado di cristallizzare, infatti questa forma cristallina di polipropilene aveva forza, rigidità e un punto di fusione persino superiore all'HDPE.

Questo rapido sviluppo ha creato due materiali che rappresentano oggi oltre il 50% della produzione mondiale annuale di polimeri.

È interessante notare che la moglie di Giulio Natta, Rosita Beati, che non era un chimico, ha coniato i termini atattico, isotattico e sindiotattico per descrivere le diverse strutture che si potevano creare polimerizzando il polipropilene.

Oggi usiamo questi termini per riferirci in generale alle strutture isomeriche che si possono formare quando i polimeri vengono prodotti utilizzando vari tipi di catalizzatori.

.



Iscriviti gratuitamente a rNEWS per leggere l’articolo completo
Se sei già iscritto leggi l’articolo

CONTATTACI

Copyright © 2024 - Privacy Policy - Cookie Policy | Tailor made by plastica riciclata da post consumoeWeb

plastica riciclata da post consumo